
SPI Storm Studio

C library user's guide

Revision 1.05 - 17-Oct-2014 1/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

Table of Contents
1Introduction... 4
2SPIStorm.dll Library Description...4

2.1Functions Quick Reference Table..4
2.2Functions Details...5
2.3Functions Return Codes..9

Revision 1.05 - 17-Oct-2014 2/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

References
[]

History

Version Date Description
1.00 June, 2nd, 2011 Initial revision
1.02 Dec, 16th, 2011 Updated spis_ScanDev function for SPI Storm Studio 1.1.8
1.03 Jul 9th, 2012 Added version function
1.04 Jan 8th, 2013 Added error code
'1.05 Oct 17th, 2014 Re-published document

Revision 1.05 - 17-Oct-2014 3/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

1 Introduction
SpiStorm.dll is a C DLL used in SPI Storm Studio software. This library contains the functions required to configure and control SPI
Storm device.

Users wishing to develop their own interface application, automate tasks or integrate SPI Storm control within other environments
are enabled to do so with simple C function calls.

This user's guide describes the functions that are made available in SpiStorm.dll library.

2 SPIStorm.dll Library Description

2.1 Functions Quick Reference Table
Table 1 gives the list of the functions callable from SPIStorm.dll.

Function prototype Description

int spis_CreateInstance(void); Creates an instance of the SPI Storm library.

void spis_DeleteInstance(int Handle); Deletes an instance of the SPI Storm library.

void spis_SelectInstance(int Handle); Selects an instance of the SPI Storm library.

int spis_ScanDev(unsigned char *pType, unsigned int *pID, unsigned char
*pSerNum, bool *pInUse);

Scans the USB bus for available SPI Storm devices.

int spis_Connect(char *pSerNum, unsigned short SupplyVoltage); Connects to an available SPI Storm device.

int spis_Disconnect(void); Disconnects from an SPI Storm device.

int spis_SetDisconnectCallback(void *pObj, void *pFct); Defines a callback for the device disconnection.

int spis_LoadPrjFile(char *pFileName, bool CheckSyntax, bool SetInitial); Loads a SPI Storm project file.

int spis_ExecProg(bool Blocking); Executes a program.

int spis_ExecProgBuf(char **pBufOut, char **pBufIn, unsigned int NrBuf,
bool Blocking);

Executes a program by passing used buffers.

int spis_ExecMacro(char *pLabel,char *pBufOut, char *pBufIn); Executes a macro.

int spis_StartSequence(void); Starts burst of macros.

int spis_EndOfSequence(void); Finalizes a bursts of macros.

int spis_Abort(void); Aborts a running program or (burst of) macro(s).

int spis_GetState(void); Retrieves the current state of the SPI Storm device.

int spis_SetStateCallback(void *pObj, void *pFct); Defines a callback for the systems status.

int spis_SetSysErrCallback(void *pObj, void *pFct); Defines a callback for a system error.

int spis_Version(unsigned char *pMajor, unsigned char *pMinor, unsigned
short *pPatch)

Returns the DLL version.

Table 1: Functions quick reference

Revision 1.05 - 17-Oct-2014 4/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

2.2 Functions Details

int spis_CreateInstance(void);
Parameters: none
Returns: A handle to the initialized library instance.
Description: Creates an SPI Storm instance and initializes the SPI Storm library. This function must be called a first

time before any other function, to ensure proper operation of the library.
A new SPI Storm library instance is created every time the function is called. The user application can
select between the created instances with the spis_SelectInstance function. Multiple instances are
useful when controlling multiple SPI Storm devices from one user application.

void spis_DeleteInstance(int Handle);
Parameters: Handle : Handle to an instance of a previously created library instance.
Returns: -
Description: Deletes the library instance corresponding to the supplied handle. The library instance must first be

created with spis_CreateInstance.

void spis_SelectInstance(int Handle);
Parameters: Handle : Handle to an instance of a previously created library instance.
Returns: -
Description: Selects the library instance corresponding to the supplied handle. The library instance must first be

created with spis_CreateInstance.

int spis_ScanDev(unsigned char *pType, unsigned int *pID, unsigned char *pSerNum, bool *pInUse);
Parameters: pType : Array receiving the type of connection for each SPIStorm device. The type is always USB and is

equal to 0.
pID : Array receiving the vendor ID and product ID for each SPIStorm device. The vendor ID is always
0x1CC4 and product ID is always 0x0401.
pSerNum : Array receiving the serial number for each SPIStorm device. Each serial number is 11 bytes
wide.
pInUse : Array receiving the connection status of the device. If true, the device is already in use and is
not available for connection.

Returns: The number of SPIStorm devices found when the value is between 0 and 127, other values
correspond with one of the return codes described in paragraph 2.3.

Description: Scans the USB bus for connected SPIStorm devices. The three parameters are pointers to three
buffers.

The connection type is defined by one char (= 1 byte), hence the minimum size of the first buffer must
be equal the the number of connected SPIStorm devices times one byte.

The ID is defined by one int (= 4 bytes), hence the minimum size of the second buffer must be equal
the the number of connected SPIStorm devices times four bytes.

The serial number is defined by eleven bytes, hence the minimum size of the last buffer must be
equal the the number of connected SPIStorm devices times eleven bytes.

The maximum number of devices allowed on a USB bus is 127. Hence, allocating respectively 1*127
bytes, 4*127 bytes and 11*127 bytes for pType, pID and pSerNum will always work.

The function returns the number of SPIStorm devices found. This also indicates the “fill level” of the
three parameters. If 3 devices were found, the buffer will respectively contain 3 bytes, 12 bytes and
33 bytes of valid data.

int spis_Connect(char *pSerNum, unsigned short SupplyVoltage);
Parameters: pSerNum : Pointer to an eleven byte buffer containing the serial number of the SPIStorm device to

connect to.

Revision 1.05 - 17-Oct-2014 5/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

SupplyVoltage : Defines the user interface supply voltages. Following values are valid:
• 3300 : supply voltage between 3.30V and 2.91V
• 2500 : supply voltage between 2.90V and 2.16V
• 1800 : supply voltage between 2.15V and 1.66V
• 1500 : supply voltage between 1.65V and 1.39V
• 1250 : supply voltage between 1.38V and 1.25V

Returns: See return codes paragraph 2.3.
Description: Connects to the SPIStorm device defined by the serial number. During connection, the device is

loaded with its configuration defined by the supply voltage.

int spis_Disconnect(void);
Parameters: none
Returns: See return codes paragraph 2.3.
Description: Disconnects the library from the SPIStorm device.

int spis_SetDisconnectCallback(void *pObj, void *pFct);
Parameters: pObj : Pointer to an instance of a user object.

pFct : Callback function.
Returns: See return codes paragraph 2.3.
Description: Defines a function to be called on the device disconnection. The callback prototype is: void

DisconnectCallback(void *pObj)

int spis_LoadPrjFile(char *pFileName, bool CheckSyntax, bool SetInitial);
Parameters: pFileName : Pointer to a string containing the file name.

CheckSyntax : Forces to execute a syntax check only, the project file isn't be loaded. To load the
project file, this field must be set to false.
SetInitial : Sets the SPIStorm device to its initial state after having loaded the project file. This field is
only used when CheckSyntax = false.

Returns: See return codes paragraph 2.3.
Description: Loads a project file. This function must always be called at least once before executing a program or a

macro.

int spis_ExecProg(bool Blocking);
Parameters: Blocking : When set to true, the function call is blocking till the end of the program execution.
Returns: See return codes paragraph 2.3.
Description: Executes the program as defined in project file. This is fully equivalent to pressing the “Run” button in

the graphical user interface.

int spis_ExecProgBuf(char **pBufOut, char **pBufIn, unsigned int NrBuf, bool Blocking);
Parameters: pBufOut : Pointer to array of pointers containing the output buffers.

pBufInf : Pointer to array of pointers containing the input buffers.
NrBuf : Number of input/output buffers.
Blocking : The function call is blocking till the end of the program execution if true.

Returns: See return codes paragraph 2.3.
Description: Executes the program defined in the project file, using user provided buffers. A program is an

assembly of macros. A macro uses a write and read buffer to send and receive data. A macro can send
and receive data simultaneously. Every macro needs a write and a read buffer, hence the length of
the array of pointers must be equal to the number of macros executed.

int spis_ExecMacro(char *pLabel,char *pBufOut, char *pBufIn);
Parameters: pLabel : Pointer to a string containing a macro label.

pBufOut : Pointer to a buffer containing the data to be sent.
pBufIn : Pointer to a buffer where the received data will be stored.

Returns: See return codes paragraph 2.3.
Description: Executes a macro selected by pLabel. The label must match one of the macros defined in the project

file. The function sends data to the device stored in pBufOut and stores the data received from the

Revision 1.05 - 17-Oct-2014 6/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

device in pBufIn. The output buffer size will for example be three bytes if the macro outputs 17 bits
data bits. Identically, the input buffer size will for example be 2 bytes if the macro reads 9 bits data.

int spis_StartSequence(void);
Parameters: none
Returns: See return codes paragraph 2.3.
Description: Marks the beginning of a burst transfer of macros. A burst always starts with a call to

spis_StartSequence, one or more calls to spis_ExecMacro and a call to spis_EndOfSequence. The burst
transfer has the advantage that the macros are grouped when sent to the SPIStorm device. This is in
opposition with a simple macro executions where every macro is executed one after the other with a
higher latency.

int spis_EndOfSequence(void);
Parameters: none
Returns: See return codes paragraph 2.3.
Description: Marks the end of a burst transfer of macros. The execution of macros will only start after

spis_EndOfSequence is called. All macros are accumulated before this function is called to optimize
the burst transfer.

int spis_Abort(void);
Parameters: none
Returns: See return codes paragraph 2.3.
Description: Aborts a running job.

int spis_GetState(void);
Parameters: none
Returns: The current state of SPIStorm. Following states are defined:

• 0x00 : Idle
• 0x01 : Initialising (configuring the library for a program or macro execution)
• 0x02 : Pre-loading (the device for execution)
• 0x03 : SPI waiting trigger
• 0x04 : SPI running
• 0x30 : GPO waiting trigger
• 0x40 : GPO running
• 0x05 : Receiving SPI data
• 0x06 : Done
• 0x07 : Aborted

Description: Retrieves the current state of the SPIStorm device. Note that the low and high nibble of the state can
be combined. A state of 0x45 means that the SPI transfers are done but that SPI data is still being sent
to the host PC, while the GPO is still running.

int spis_SetStateCallback(void *pObj, void *pFct);
Parameters: pObj : Pointer to an instance of a user object.

pFct : Callback function.
Returns: See return codes paragraph 2.3.
Description: Defines a function to be called on a state change (see spis_GetState for the existing states).

The callback prototype is: void StateCallback(void *pObj, unsigned int State)

int spis_SetSysErrCallback(void *pObj, void *pFct);
Parameters: pObj : Pointer to an instance of a user object.

pFct : Callback function.
Returns: See return codes paragraph 2.3.
Description: Defines a function to be called when a system error occurs.

The callback prototype is: void SysErrCallback(void *pObj, unsigned int Err)
This function must be called before connecting to a device.

Revision 1.05 - 17-Oct-2014 7/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

int spis_Version(unsigned char *pMajor, unsigned char *pMinor, unsigned short *pPatch)
Parameters: pMajor : pointer to major version number

pMinor : pointer to minor version number
pPatch : pointer to patch version number

Returns: See return codes paragraph 2.3.
Description: Returns SPI Storm Studio's DLL version.

Revision 1.05 - 17-Oct-2014 8/10

Byte Paradigm – info@byteparadigm.com

SPI Storm Studio
C library user's guide

2.3 Functions Return Codes

Return code Meaning Action required

0x00000000 No error

USB Device Driver

0x80000002 No valid USB device found Check if your SPI Storm device is connected to the USB port.

0x80000004 Failed to open USB driver Check if you have properly installed the USB driver.
Check if your SPI Storm device is properly connected to the USB port.

0x80050001 Failed to load bin file Check if your working directory contains all the *.bin files provided with SPI
Storm Studio.

Licensing

0x00080001 No valid license 1) Check if you have received your license file.
If you don't have it, mailto: support@byteparadigm.com to request your
license file. You MUST provide your SPI Storm unit serial number. It is
located at the back of your device.

2) Install your license with SPI Storm Studio GUI.
Please click here to know how to install license.

3) If you still receive once of these error codes, please contact Byte
Paradigm support (support@byteparadigm.com).

0x00080002 Invalid license features

0x00080003 License not found in license file

0x80080001 Failed to open license file

0x80080002 License decoding failed

0x80080003 Failed to find license section

Logging

0x80200002 Log file not opened Soft cannot create log file in roaming directory.
Check users directory properties:
Windows 7 users: the roaming directory is located here:
C:\Users\<user>\AppData\Roaming\ByteParadigm\SpiStormStudio

Windows XP users: the 'roaming directory' is located here:
C:\Documents and Settings\<user>\Application
Data\ByteParadigm\SpiStormStudio

Contact your IT manager to set your permissions properly.

Configuration File

0x80400001 Failed to open the project file The project file is locked or does not exist. Check status.

0x80400002 Failed to create project file log Check if the log file destination is accessible.

0x80400003 Project file contains errors Check project file syntax.

0x80400004 Project file not defined Specified project file is NULL. Please correct.

0x80400005 Project file name exceeds 256
characters

Please shorten project file name (including path).

Application

0x80500001 No device connected You attempted to execute an operation with SPI Storm device be you failed
to connect it properly.

Please first use spis_Connect function to connect a device.

0x80500002 Application already connected
to a device

You already connected a device.
If you want to connect another device, disconnect it and connect the new
device. Use spis_Connect to connect and spis_Disconnect functions.

0x80500003 Unable to scan the USB bus
while connected to a device

Disconnect device first (spis_Disonnect) and then scan.

0x80500004 No program defined You attempted to run a program whereas no program is defined.

Revision 1.05 - 17-Oct-2014 9/10

Byte Paradigm – info@byteparadigm.com

mailto:support@byteparadigm.com
mailto:support@byteparadigm.com
http://www.byteparadigm.com/kb/article/AA-00501/0/How-to-install-license-file-in-SPI-Storm-Studio.html

SPI Storm Studio
C library user's guide

0x80500005 Program or macro already
running

You attempted to run a program that is already running.

C API

0x80900001 Unable to find instance on C
API

You called a function without having created an instance first.
Please use spis_CreateInstance first.

0x80900002 Not enough user buffers
provided

There is a mismatch between the number of buffers that you provided
when calling ExecProg* and the number of buffer strictly needed for this.

0x80900003 Too many user buffers
provided

0x80900004 Macro reference not found You called a macro that does not exist. Please check your macro call name
and parameters.

0x80900005 Already in a sequence You called spis_StartSequence multiple times.

0x80900006 Not in a sequence You called spis_EndSequence without first calling spis_StartSequence.

If you receive an error code that is not listed above, please contact Byte Paradigm support to report it:
support@byteparadigm.com

Revision 1.05 - 17-Oct-2014 10/10

Byte Paradigm – info@byteparadigm.com

mailto:support@byteparadigm.com

	1 Introduction
	2 SPIStorm.dll Library Description
	2.1 Functions Quick Reference Table
	2.2 Functions Details
	2.3 Functions Return Codes

