
Revision 1.14 – 20-Jan-12 1/27

Byte Paradigm – info@byteparadigm.com

SPIC C Library
User's Guide

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 2/27

Table of Content
1 Introduction .. 4
2 SPI Operating Mode ... 5

2.1 Features.. 5
2.2 SPI Signals .. 5
2.3 Signals Mapping on the device connector... 6

3 SPIC Library .. 7
3.1 Functions quick Reference Table... 7
3.2 Functions details .. 10

Table of Tables
Table 1: SPI signals description .. 5
Table 2: Quick reference table of ADWG procedures (by functionality)... 7
Table 3 : Access length according to access type and SS edges positioning.. 16

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 3/27

References
[1] GP-22050 data sheet (ds_GP22050.pdf)

This document contains all the technical characteristics of the GP-22050 device.
[2] 8PI Control Panel – SPI mode of operation user’s guide (ug_8PIControlPanel_SPI.pdf).

History
Version Date Description

1.00 07-Jun-2006 Initial revision
1.01 17-Nov-2006 Updated command list table
1.02 15-Dec-2006 Review for SPI mode of operation update
1.03 16-May-2007 Added the SPI analyser functions
1.04 30-May-2007 Review for release
1.05 05-Sep-2007 Modified SetReqClock and SetSSEdgesDescription
1.06 13-Nov-2007 Update for SPI Xpress
1.07 08-Oct-2008 Added IdleBurst function
1.08 24-Sep-2009 Update for release 1.07a
1.09 16-Feb-2010 Review for release 1.08f.
1.10 05-July-2010 Corrected accesses length.

Completed some functions description
1.11 08-July-2010 Updated info about max. access length in SPI
1.12 09-Aug-2010 Added function prefixes and multi-device support
1.13 22-Oct-2010 Removed obsolete ShiftWr, ShiftWrH and ShiftWrBurst functions
1.14 20-Jan-2012 Added IO voltage selection

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 4/27

1 Introduction
The SPIC library is a specialised C library used with the GP-22050 device in SPI mode of operation and
for the SPI Xpress device. It provides a set of ‘pure C’ functions to configure and control the chosen
device from within a C/C++ compatible environment. As opposed to the corresponding C++ libraries,
this library offers a ‘pure C’ interface with each function, which is often easier to integrate from within
any external environment.

This library calls itself other libraries and functions to manage the low level transfer of data between the
host PC and the device. Schematically, any session using the SPIC library starts by connecting itself to
the 8PI Smart Router© application delivered with the 8PI Control Panel. This application manages the
different client connections to the device and handles priorities between the processes and applications.
On the other side, it is responsible for the actual data transfers onto the USB connection.

For advanced information and support, please submit your requests to: support@byteparadigm.com.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 5/27

2 SPI Operating Mode

2.1 Features
GP Series devices (such as GP-22050) can be configured as a master/analyser device for a Serial
Peripheral Interface (SPI) bus. The SPI Xpress device offers the same functionalities. The main features
of these devices are:
 SPI and ‘SPI-like’ protocol Master/Analyser for 3- or 4-wire bus architecture
 Controls up to 5 slave devices
 Programmable frequency from 800Hz up to 50MHz
 Programmable polarity for the slave select signals
 Programmable positioning of the slave select signal start and end edges
 Programmable polarity for the write enable signal (3-wire architecture)
 Continuous or non-continuous clock mode
 Programmable level for clock idle state
 Programmable clock edge to generate and capture data
 Programmable latency between write and read access in 3-wire architecture
 Ability to burst the SPI master accesses
 3 levels of analysis for SPI accesses: oversampled, logical and SPI transfer
 Integrated GTK Wave waveform viewer
 Scripting and logging

2.2 SPI Signals
The standard SPI bus architecture is composed of 4 signals: SCLK, SS, MISO and MOSI (refer to Table 1
for detailed description). As the input and output data lines are independent, this architecture can be
used to operate in full duplex mode.
A second bus architecture can be implemented using only 3 signals. In this case, a single bidirectional
data line is used MISO/MOSI. This bus architecture can then only operate in half-duplex mode.

Table 1: SPI signals description

Signal Description
SCLK Serial clock signal generated by the master.
SS Active low slave select signal. When several slave devise are connected to the same master,

SS line is used to activate only one slave for the transfer.
MISO(1) Master In / Slave Out. Input data line for the master device.
MOSI(1) Master Out / Slave In. Output data line for the master device.

WE Write enable signal. Optional signal only used for the 3-wire bus architecture
(1) In the 3-wire architecture, these two signals are combined in a single bidirectional MISO/MOSI signal

The serial clock SCLK frequency can be defined from 800 Hz up to 50 MHz. The clock can be generated
continuously or not. When the continuous mode is selected, a permanent clock is sent out at the
requested frequency. When the non-continuous mode is selected, a hole clock is generated. In this
case, a clock pulse is only generated when a data bit is shifted in or out of the master device. The idle
level of the non-continuous clock is programmable high or low. For example, in non-continuous mode, if
8 bits must be written to the slave, only 8 clock pulses are generated. When no bit is shifted, the clock
remains in the idle level programmed by the user.

Up to 5 SS (Slave Select) lines can be controlled by the device. These lines are by default active low.
They are used to activate a single device when several slaves are connected to the same master. The
number of lines that can be driven is programmable from 0 to 5. The number of slave must be set to 0
when a single device is connected to the device and no selection lines must be driven.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 6/27

Note: When a SS line is driven and when the non-continuous clock mode is enabled, an
additional clock pulse is generated by default before to shift the first data bit with the
SS signal inactive. Then when the bits are shifted in and/or out, the SS line is driven
low (active). At the end of the transfer, an additional clock pulse is generated with the
SS line high (inactive). In this mode, if n bits must be shifted, n+2 clock pulses are
generated to let the slave detect the rising and falling edge of the SS line. This default
addition of clock pulses can be deactivated in C/C++ and TCL modes.

The MOSI line is driven by the master. The SCLK edge used to shift the serialised data out of the master
is programmable. The data can be sent out on the rising or falling edge of SCLK.
As for the outgoing data line, the edge used to capture the MISO input line can be programmed (rising or
falling). If MOSI is generated on the clock rising edge, then MISO is sampled on the clock falling edge
and vice versa. Access length can be programmed from 1 to 32.000 bits1.
For the 3-wire bus architecture, the MISO and MOSI lines are combined in a single bidirectional line.
When switching between read and write accesses, the data line direction must be inverted in the master
and slave devices. Idle state cycles can be introduced between the write and the read accesses to have
time to reverse the data line direction. During the idle cycles, the device keeps the data line in high
impedance Hi-Z state to avoid conflict on the bus. Write and Read length can be set up to 4.0952 bits.
Latency between write and read can be programmed from 0 to 400 SCLK cycles.

Notes: 1. The device is cycle accurate and is capable of working without introducing any idle
latency cycle between read and write. However this operating mode is not
recommended because shorts can occur on the data line due to the AC timing
difference between the master and the slave. A minimum value of 1 is recommended.
During the write-to-read latency cycles, in non-continuous clock mode, clock pulses can
be optionally generated.

2. When working in non-continuous clock mode, no clock pulses is generated during the
idle cycles.

A Write Enable (WE) signal is generated. The polarity of this signal is programmable. The signal is
activated when the first bit of a transfer is shifted out to the selected slave device. It is deactivated when
the last bit of the write access has been transferred. During a read access it remains inactive. The main
difference between WE and SS, is that WE is only activated when data is written to the slave.

2.3 Signals Mapping on the device connector
Please refer to SPI Xpress / GP Series devices data sheets for signal mapping.

1 The max. value actually depends on additional parameters described in Table 3.
2 Idem.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 7/27

3 SPIC Library

3.1 Functions quick Reference Table
Table 2 gives a list of the functions available in the SPI library. They are grouped by functionality as in
the SPIC.h header file

Table 2: Quick reference table of ADWG procedures (by functionality)

Function Prototype Description
int spi_SPIIC(void) Initialises an SPI session and creates a first instance of the

SPIC library.
int spi_CreateInstance(void) Creates and additional instance of the library.
void spi_SelectInstance(int Handle) Selects a library instance.
int spi_SelectDevice(char *pSerNum) Selects a device using the serial number.
void spi_SelectIOVoltage(int IOVoltage) Selects the user interface voltage.
void spi_Terminate(void) Closes an instance of the SPIC library. A call to this

function is mandatory for each instance of the library
before closing the application.

bool spi_IsDeviceReady(void) Checks if the device is properly connected to the host PC.
void spi_SetClockCont(bool Cont) Defines the serial clock operating mode: continuous clock

or hole clock.
bool spi_GetClockCont(void) Returns the clock mode currently in use.
void spi_SetMode(int Mode) Defines the SPI operating mode.
int spi_GetMode(void) Returns the SPI operating mode.
void spi_SetWrEn(bool High) Sets the WrEn signal active level in 3-wires SPI mode
bool spi_GetWrEn(void) Returns the WrEn signal active level in 3-wires SPI mode
int spi_SetReqClock(int Freq) Defines the requested operating clock frequency (in Hz).
int spi_GetReqClock(void) Returns the current requested operating clock frequency (in

Hz).
int spi_GetSynthClock(void) Returns the achieved operating clock frequency (in Hz).
void spi_SetNrOfSlaves(int NrSlaves) Defines the number of SPI slaves connected to the device.

A maximum of 5 slaves can be connected to the same
device.

int spi_GetNrOfSlaves(void) Returns the number of SPI slaves currently defined.
void spi_SelectSlave(int SlaveID) Defines the ID of the slave to select for the next SPI

transfer.
int spi_GetSelectedSlave(void) Returns the ID of the slave currently selected for SPI

transfers.
int spi_SetSSEdges(

int SSDelayStart,
int SSDelayStop)

Defines the slave select edges position.

int spi_GetSSDelayStart(void) Returns the slave select start edge positions
int spi_GetSSDelayStop(void) Returns the slave select stop edge positions
void spi_SetSSActiveLevel(bool Level) Sets the SS signal(s) active level.
bool spi_GetSSActiveLevel(void) Return the SS signal(s) active level.
void spi_SetSSClockMasking(bool Enable) Defines the clock masking behaviour with the slave select

bool spi_GetSSClockMasking(void) Returns the clock masking mode with the slave select

void spi_SetLatencyClockMasking(
bool Enable)

Defines the clock masking behaviour during SPI3 latency

bool spi_GetLatencyClockMasking(void) Returns the clock masking behaviour during SPI3 latency
void spi_SetBitOrder(bool BitOrder) Defines the bit ordering within each data byte.
bool spi_GetBitOrder(void) Returns the bit ordering within data byte.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 8/27

Function Prototype Description
void spi_Plugin4V7V(bool Enable) Enable or disable to 4V to 7V plug-in.
Int spi_WriteConfFile(

char *FileName,
bool Message)

Writes the current SPI configuration to a file.

Int spi_ReadConfFile(
char *FileName,
bool Message)

Reads the SPI configuration from a file.

Int spi_Idle(
int NrBits,
bool Message)

Runs a given number of Idle cycles.

Int spi_IdleH(
int NrBits,
bool Message,
int Handle)

Runs a given number of Idle cycles for a specific library
instance.

int spi_ShiftWrAndRd(
int NrBits,
char *pDataOut,
char *pDataIn,
bool Message)

Performs a simultaneous write and read access to the
selected slave (for SPI-4 only)

int spi_ShiftWrAndRdH(
int NrBits,
char *pDataOut,
char *pDataIn,
bool Message,
int Handle)

Performs a simultaneous write and read access to the
selected slave (for SPI-4 only) for a specific library
instance.

int spi_ShiftWrThenRd(
int NrBitsOut,
int NrBitsIn,
char *pDataOut,
char *pDataIn,
int Latency,
bool WREnHigh,
bool Message)

Performs a write access followed by a read access to/from
the selected slave. (for SPI-3 only)

int spi_ShiftWrThenRdH(
int NrBitsOut,
int NrBitsIn,
char *pDataOut,
char *pDataIn,
int Latency,
bool WREnHigh,
bool Message,
int Handle)

Performs a write access followed by a read access to/from
the selected slave (for SPI-3 only) for a specific library
instance.

void spi_InitBurst (void) Initialises a new burst transfer
int spi_ShiftWrAndRdBurst(

int NrBits,
char *pDataOut,
char *pDataIn,
bool Message)

Adds a new simultaneous write and read access (to the
selected slave) to the burst buffer. This is available in SPI-4
mode only.

int spi_ShiftWrThenRdBurst(
int NrBitsOut,
int NrBitsIn,
char *pDataOut,
char *pDataIn,
int Latency,
bool WREnHigh,
bool Message)

Adds a write access followed by a read access to/from the
selected slave to the burst buffer. This is available in SPI-3
mode only)

void spi_SendBurst (bool Message) Starts a new burst transfer.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 9/27

Function Prototype Description
void spi_SendBurstH (

bool Message,
int Handle)

Starts a new burst transfer for a specific library instance.

int spi_GetFirstBurstTransfer(void) Selects the first SPI transfer to readback the captured data.
int spi_GetNextBurstTransfer(void) Selects the next SPI transfer to readback the captured

data.
int spi_GetBurstData(

int nr,
char *pData)

Returns one single data byte from one transfer.

int spi_GetCapturedData(
int NrBytes,
void *pData)

Returns a pointer to the full set of captured data in one
transfer.

int spi_GetScriptLength(char *FileName) Returns the loaded script length in number of samples in
SPI Master mode.

int spi_ExecuteScript(char *FileName) Executes the specified script in SPI Master mode.
int spi_GetScriptPos(void) Returns the line position in the script being executed.
int spi_Analyse(

unsigned int NrBits,
bool SPI4Mode,
unsigned int SPI3WrLength,
unsigned int SPI3Latency,
unsigned int SPI3RdLength,
bool Message);

Starts the SPI Analyser for a given number of samples

int spi_AnalyseH(
unsigned int NrBits,
bool SPI4Mode,
unsigned int SPI3WrLength,
unsigned int SPI3Latency,
unsigned int SPI3RdLength,
bool Message,
int Handle);

Starts the SPI Analyser for a given number of samples and
for a specific library instance

void spi_Abort(void) Aborts the running SPI Analyser.
int spi_GetCurrPos(void) Returns the position within the script being executed

(sample index).
void spi_SetExportFileName(char *FileName) Specifies the output file name for the autosave feature in

SPI Analyser mode.
char *spi_GetExportFileName(void) Returns the name of output file for the autosave feature in

SPI Analyser mode.
void spi_SetExportFileType(

unsigned int FileType)
Specifies the output file type for the autosave feature in
SPI Analyser mode.

int spi_GetExportFileType(void) Returns the selected file type for the autosave feature in
SPI Analyser mode.

void spi_SetAutoSave(bool AutoSave) Enables / disables the autosave feature for the SPI
Analyser.

bool spi_GetAutoSave(void) Returns the Enable/Disable status of the autosave feature
of the SPI Analyser.

int spi_ExportRawDataFile(char *FileName) Exports the analysed data to a file, raw format.
int spi_ExportRawSPIDataFile(

char *FileName)
Exports the analysed data to a file, raw SPI format (values
sampled at the SPI clock edges)

int spi_ExportDecodedSPIDataFile(
char *FileName)

Exports the analysed data to a file, decoded format.

int spi_GetLastErr(void) Returns the last encountered error code.
void spi_SetInternalTrigger(bool Internal) Specifies the trigger type (internal / external).
bool spi_GetInternalTrigger(void) Returns the current trigger type selection.
void spi_SetEdgeTrigger(bool Enable) Selects edge or level trigger.

void spi_GetEdgeTrigger(void) Returns edge or level trigger.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 10/27

Function Prototype Description
void spi_SetCtrlTrigMask(short *pMask) Specifies the control trigger mask.
int spi_GetCtrlTrigMask(void) Returns the programmed control trigger mask.
void spi_SetCtrlTrigPattern(short *pPattern) Specifies the trigger pattern.
int spi_GetCtrlTrigPattern(void) Returns the programmed trigger pattern.
int spi_SetTriggerPos(int Sample) Defines the position of the trigger in the run – that is the

number of samples before the trigger.
int spi_GetTriggerPos(void) Returns the programmed trigger position.
int spi_GetOverSampling(void) Returns the current clock oversampling.

3.2 Functions details

int spi_SPIIC(void)
parameters: none
returns: A handle to the initialised library instance.
description: Initialises an SPI session and creates a first instance of the SPIC library.

This function must be called at the start of any session using the SPIC
library. It enables the control of the device by registering the C session as
a client to the 8PI Smart Router.

void spi_Terminate(void)
parameters: none
returns:
description: Closes an instance of the SPIC library and closes the communication with

the device. A call to this function is mandatory for each instance of the
library before closing the application.

int spi_CreateInstance(void)
parameters: none
returns: A handle to the created library instance.
description: Creates an additional instance of the library. This in needed when using

more than one device at the same time. Each instance of the library can
be linked to a different device with the spi_SelectDevice function.

void spi_SelectInstance(int Handle)
parameters: Handle: Handle to a instance of a previously create library

instance.
returns:
description: Selects the library instance corresponding to the supplied handle. The

selected instance must first be created with spi_CreateInstance.

int spi_SelectDevice(char *pSerNum)
parameters: pSerNum: ascii encoded string containing an 11 character serial

number
returns: -1 when the selection fails, a positive of zero value is returned on success
description: Selects the device based on its serial number. The selected device is

associated with the currently selected library instance.

void spi_SelectIOVoltage(int *IOVoltage)
parameters: IOVoltage: integer value representing the IO voltage, the IO

voltage can be internally generated of user applied. The voltage
level is defined in millivolts.

returns:

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 11/27

description: This function only takes the following predefined values: 3300, 2500,
1800, 1500 and 1200. The nearest value must be selected when the user
applies a different external voltage level. For example, set IOVoltage to
2500 when 2.7V is applied.
The default value is 3300.

bool spi_IsDeviceReady(void)
parameters: none
returns: Device connection status.

true device ready
false device not ready or not connected

description: Returns the status of the connection with the device. Using this function is
not required to be able to communicate with the device. It is provided to
check status if needed. When another function requests an access to the
device, the communication status is always automatically checked before
starting the transfer.

void spi_SetClockCont(bool Cont)
parameters: Cont: Boolean parameter defining the clock operating mode

true continuous clock mode
false hole clock mode

returns:
description: Defines the operating mode for the generated SPI clock. The clock can

operate in continuous mode where it is permanently applied on the device
output pin. In hole clock mode, the clock pulses are provided only when
data is being transferred (write or read).

bool spi_GetClockCont(void)
parameters: none
returns: Continuous clock status

true continuous clock mode
false hole clock mode

description: Returns the SPI clock mode currently in use.

void spi_SetWrEn (bool High)
parameters: High: Boolean.
returns:
description: Defines the WrEn signal(s) active level (High = 1 for ‘high level’; High = 0

for ‘low level’) (3-wires SPI mode).

bool spi_GetWrEn (void)
parameters: none
returns: 0 or 1. 0 for ‘active low’; 1 for ‘active high’.
description: Returns the WrEn signal line active level (3-wires SPI mode)

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 12/27

void spi_SetMode(int Mode)
parameters: Mode: Defines the SPI operation mode – that is the clock idle level

and the edges used to send and capture data bits.

Idle Level MOSI MISO
0 (00) low falling rising
1 (01) low rising falling
2 (10) high rising falling
3 (11) high falling rising

returns:
description: Defines the clock idle level and clock edges used to sample or generate

data bits. When the clock mode is set to non-continuous (hole mode), the
level of the clock when no transfer is performed can be programmed to
remain high (modes 2/3) or low (modes 0/1).
The SPI clock edges used to generate the data out of the master device
(MOSI) or to capture data received by the master (MISO) can also be
programmed. According to the selected mode, the data are generated and
captured on the rising or falling edge of the SPI clock.

int spi_GetMode(void)
parameters: none
returns: Integer value describing the selected mode.

Idle Level MOSI MISO
0 (00) low falling rising
1 (01) low rising falling
2 (10) high rising falling
3 (11) high falling rising

description: Returns the SPI synchronisation mode currently in use.

int spi_SetReqClock(int Freq)
parameters: Freq: 32-bits integer value providing the requested frequency to

be used to generate the SPI clock signal (in Hz). The value can be
set between 800 Hz and 50000000 Hz (50MHz).
The default value is set to 1MHz.

returns: An integer error code; <0 if operation failed
description: Defines the requested frequency for the SPI clock. The parameter of this

function is only the requested frequency and not the real frequency that
will be generated. The output clock frequency of the device can be
programmed with a resolution of 4ns (integer division of a 200MHz
reference clock). This means that not all frequencies can be exactly
generated. The device always generates the closest frequency
corresponding to an integer division of 200MHz and immediately below the
requested frequency.
Example:

requested frequency = 124000 Hz
achieved frequency = 123992 Hz

int spi_GetReqClock(void)
parameters: none
returns: Integer value representing the currently requested clock frequency (in Hz)
description: Returns the requested SPI clock frequency expressed in hertz (Hz).

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 13/27

int spi_GetSynthClock(void)
parameters: none
returns: Integer value between 800 and 50000000 (50MHz).

description: Returns the real output clock frequency generated by the device. This
frequency is the closest frequency corresponding to an integer division of
200MHz and immediately below the requested frequency.

void spi_SetNrOfSlaves(int NrSlaves)
parameters: NrSlaves: Integer value defining the number of slaves

connected to the device. This value can be defined between 0 and
6. The default value is 1.

returns:
description: The device can control up to 5 slaves. This function defines the number of

slaves connected to the master device. It configures the number of Slave
Select (SS) lines that must be used to activate the different slave devices.
If the value is set to 0, a single slave device can be connected to the
device and no SS line is driven.

int spi_GetNrOfSlaves(void)
parameters: none
returns: Integer value
description: Returns the current value programmed defining the number of slave

devices connected to the device.

void spi_SelectSlave(int SlaveID)
parameters: SlaveID: Integer value between 1 and 5.

By default, ID=1 is defined.
returns:
description: Defines the ID of the slave that must be selected for the following data

transfers.

int spi_GetSelectedSlave(void)
parameters: none
returns: Integer value between 1 and 5.
description: Returns the ID of the slave currently selected for the SPI accesses.

int spi_SetSSEdges(int SSDelayStart, int SSDelayStop)

parameters: SSDelayStart: slave select start edge delay
SSDelayStop: slave select stop edge delay

returns: An integer error code <0 if operation failed
description: Defines the delays for the edges of the slave select signal. The rising and

falling edges can separately be shifted from 0 to 2 quarters of clock period
before and after the conventional start end end edge of the transaction.
Shifting the SS edges automatically sets up the proper clock oversampling.
Valid values for the parameters are ranging from -2 to 1.

For example, SetSSEdges(-2, 1) means:
- SS starts with -2/4 (-1/2) x SCLK delay, relative to the first active

SCLK edge of the SPI access
- SS ends with +1/4 x SCLK delay, relative to the last active SCLK

edge of the SPI access.

Please note: the following rules apply for the max. SCLK frequency:

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 14/27

Delay on SS (START or STOP) Max. SCLK frequency
0 50 MHz
+/- ½ SCLK 25 MHz
+/- ¼ SCLK 12.5 MHz

int spi_GetSSDelayStart(void)
parameters:

nonereturns: Integer value between -2 and 1.
description: Returns the slave select start edge position as defined with the function

SetSSEdges

void spi_GetSSDelayStop(void)

parameters: none
returns: Integer value between -2 and 1.
description: Returns the slave select stop edge position as defined with the function

SetSSEdges

void spi_SetSSActiveLevel(bool Level)
parameters: Level: Boolean.
returns:
description: Defines the SS signal(s) active level (high or low).

bool spi_GetSSActiveLevel(void)
parameters: none
returns: 0 or 1. 0 for ‘active low’; 1 for ‘active high’.
description: Returns the SS signal(s) line active level.

void spi_SetSSClockMasking(bool Enable)
parameters: Enable: Boolean – 1 enables the masking of the clock while the

slave select is inactive, 0 disables this feature
returns:
description: Defines the clock masking behaviour with the slave select.

bool spi_GetSSClockMasking(void)
parameters: none
returns: 0 or 1. 1 for clock masking with slave select; 0 otherwise.
description: Returns the clock masking mode with the slave select.

void spi_SetLatencyClockMasking(bool Enable)
parameters: Enable: Boolean – 1 enables the masking of the clock during the

SPI3 latency, i.e. while the SPI3 master switched from write to
read; 0 disables this feature

returns:
description: Defines the clock masking behaviour during SPI3 latency.

bool spi_GetLatencyClockMasking(void)
parameters: none
returns: 0 or 1. 1 for clock masking during SPI3 latency; 0 otherwise.
description: Returns the clock masking behaviour during SPI3 latency.

void spi_SetBitOrder(bool BitOrder)

parameters: BitOrder: sets MS bit / LS bit first

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 15/27

returns:
description: Defines the bit ordering within each data byte

0 LS bit first: each byte is sent/read from LSb to MSb
1 MS bit first: each byte is sent/read from MSb down to LSb

Note that the least significant byte of the buffer is always sent first.

bool spi_GetBitOrder(void)

parameters: none
returns: Boolean
description: Defines the bit ordering within the data bytes.

0 LS bit first
1 MS bit first

Note that the least significant byte of the buffer is always sent first.

void spi_Plugin4V7V(bool Enable)
parameters: Enable: Boolean – 1 enables the 4V-7V plug-in; 0 disables this

feature
returns:
description: Controls the 4Vto 7V plug-in.

int spi_WriteConfFile(char *FileName, bool Message)

parameters: *FileName : Output file name, including path.
Message : Enables/disables pop-up messages.

returns: Integer : Error code: ≥0 if successful; another value if failed.
description: Writes the current SPI configuration to a file. Refer to [2] for a description

of the configuration file format.

int spi_ReadConfFile(char *FileName, bool Message)

parameters: *FileName : Input file name, including path.
Message : Enables/disables pop-up messages.

returns: Integer: Error code: ≥0 if successful; another value if failed.
description: Reads a configuration from a file. Refer to [2] for a description of the

configuration file format.

int spi_Idle(int NrBits, bool Message)

parameters: NrBits : Number of bits (or SPI clock cycles) to run.
Message : Enables/disables pop-up messages.

returns: Integer: Error code: ≥0 if successful; another value if failed.
description: (SPI Master) Holds the SPI interface lines in their default level during a

given number of SPI clock cycles.

int spi_IdleH(int NrBits, bool Message, int Handle)

parameters: NrBits : Number of bits (or SPI clock cycles) to run.
Message : Enables/disables pop-up messages.
Handle: handle of a library instance

returns: Integer: Error code: ≥0 if successful; another value if failed.
description: (SPI Master) Holds the SPI interface lines (of the device linked to the

specified handle) in their default level during a given number of SPI clock
cycles.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 16/27

int spi_ShiftWrAndRd(int NrBits, void *pDataOut, void *pDataIn, bool Message)
parameters: NrBits: Integer value representing the total number of bits

to be transferred to/from the slave device. This
value must be defined between 1 and a max value
described in Table 3. (32.000 bits is the absolute
maximum)

pDataOut: Pointer to a buffer containing the data bits that must
be sent out.

pDataIn: Pointer to a buffer that will receives the data bits
captured during the read access from the selected
slave device.

Message: Boolean flag controlling the generation of dialog box
to report error messages.
true dialog box enabled
false dialog box disabled

When dialog box are disabled, the error is only reported using the
return code.

returns: An integer error code. ≥0 if successful.
description: Performs a simultaneous write and read access to the slave device. This

function can only be used for a 4-wire SPI configuration. Each time a bit is
sent out, a bit is captured. If more bits must be read than written, then
the output data buffer must be padded with 0 to contain the correct
number of bits.

SPI 4 accesses SPI 3 accesses
SS start

delay
SS end
delay

ShiftWr / ShiftWrAndRd
max. access length

ShiftWrThenRd
Max. WR
length

ShiftWrThenRd
Max. Latency

length

ShiftWrThenRd
Max. Rd length

(don’t care) -1/4 SCLK 8.000 bits 1.023 bits

400 bits

1.023 bits
(don’t care) +1/4 SCLK 8.000 bits 1.023 bits 1.023 bits
-1/2 SCLK -1/2 SCLK 16.000 bits 2.047 bits 2.047 bits
-1/4 SCLK (don’t care) 8.000 bits 1.023 bits 1.023 bits
+1/4 SCLK (don’t care) 8.000 bits 1.023 bits 1.023 bits

no delay 32.000 bits 4.095 bits 4.095 bits

Table 3 : Access length according to access type and SS edges positioning.

Refer to function SetSSEdges for more information about how to set the SS start and end delays.

Positioning SS at ½ or ¼ of SCLK automatically switches an oversampling mode in the device, which
limits the maximum access length of each type of access.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 17/27

int spi_ShiftWrAndRdH(int NrBits, void *pDataOut, void *pDataIn, bool Message, int Handle)
parameters: NrBits: Integer value representing the total number of bits

to be transferred to/from the slave device. This
value must be defined between 1 and a max value
described in Table 3. (32.000 bits is the absolute
maximum)

pDataOut: Pointer to a buffer containing the data bits that must
be sent out.

pDataIn: Pointer to a buffer that will receives the data bits
captured during the read access from the selected
slave device.

Message: Boolean flag controlling the generation of dialog box
to report error messages.
true dialog box enabled
false dialog box disabled

Handle: handle of a library instance
When dialog box are disabled, the error is only reported using the
return code.

returns: An integer error code. ≥0 if successful.
description: Performs a simultaneous write and read access (using the device linked to

the specified handle) to the slave device. This function can only be used
for a 4-wire SPI configuration. Each time a bit is sent out, a bit is
captured. If more bits must be read than written, then the output data
buffer must be padded with 0 to contain the correct number of bits.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 18/27

int spi_ShiftWrThenRd(int NrBitsOut, int NrBitsIn, void *pDataOut, void *pDataIn, int
Latency, bool WREnHigh, bool Message)

parameters: NrBitsOut: Integer value representing the number of bits to be
written to the slave device. This value must be
defined between 1 and a max. value described in
Table 3.

NrBitsIn: Integer value representing the number of bits to be
read from the slave device. This value must be
defined between 0 and max. value described in Table
3.

pDataOut: Pointer to a buffer containing the data bits that must
be sent out.

pDataIn: Pointer to a buffer that will receives the data bits
captured during the read access from the selected
slave device.

Latency: Integer value defining the number of clock cycles to
insert between the write and read access. The value
must be defined between 0 and 400.

WrEnHigh: Boolean flag defining the polarity of the write enable
signal.
true active high write enable
false active low write enable

Message: Boolean flag controlling the generation of dialog box
to report error messages.
true dialog box enabled
false dialog box disabled

When dialog box are disabled, the error is only reported using the
return code.

returns: An integer error code. ≥0 if successful.
description: Performs a write access followed by a read access to the slave device.

This function can only be used for a 3-wire SPI configuration. A first write
access is performed to the selected slave device. The length of the access
is defined by NrBitsOut. Then an idle period of programmable length
(Latency) is waited before starting the read access. This idle period is
used to give time to reverse the data signal direction. The latency can be
programmed to 0, but it is recommended to program it at least to 1 to
avoid shorts/conflict on the data line due to the time needed by the
different devices to reverse the direction.
When the idle period is completed, a read access is started. NrBitsIn bits
are captured.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 19/27

int spi_ShiftWrThenRdH(int NrBitsOut, int NrBitsIn, void *pDataOut, void *pDataIn, int
Latency, bool WREnHigh, bool Message, int Handle)

parameters: NrBitsOut: Integer value representing the number of bits to be
written to the slave device. This value must be
defined between 1 and a max. value described in
Table 3.

NrBitsIn: Integer value representing the number of bits to be
read from the slave device. This value must be
defined between 0 and max. value described in Table
3.

pDataOut: Pointer to a buffer containing the data bits that must
be sent out.

pDataIn: Pointer to a buffer that will receives the data bits
captured during the read access from the selected
slave device.

Latency: Integer value defining the number of clock cycles to
insert between the write and read access. The value
must be defined between 0 and 400.

WrEnHigh: Boolean flag defining the polarity of the write enable
signal.
true active high write enable
false active low write enable

Message: Boolean flag controlling the generation of dialog box
to report error messages.
true dialog box enabled
false dialog box disabled

Handle: handle of a library instance
When dialog box are disabled, the error is only reported using the
return code.

returns: An integer error code. ≥0 if successful.
description: Performs a write access followed by a read access (using the device linked

to the specified handle) to the slave device. This function can only be
used for a 3-wire SPI configuration. A first write access is performed to
the selected slave device. The length of the access is defined by
NrBitsOut. Then an idle period of programmable length (Latency) is
waited before starting the read access. This idle period is used to give
time to reverse the data signal direction. The latency can be programmed
to 0, but it is recommended to program it at least to 1 to avoid
shorts/conflict on the data line due to the time needed by the different
devices to reverse the direction.
When the idle period is completed, a read access is started. NrBitsIn bits
are captured.

void spi_InitBurst(void)
parameters: none
returns:
description: Initialises the system for a new SPI burst transfer. Data read during a

previous burst and still available in memory is discarded.

int spi_IdleBurst(int NrBits, bool Message)

parameters: NrBits : Number of bits (or SPI clock cycles) to run.
Message : Enables/disables pop-up messages.

returns: Integer: Error code: ≥0 if successful; another value if failed.
description: (SPI Master) Holds the SPI interface lines in their default level during a

given number of SPI clock cycles. IdleBurst adds a pause to the burst
buffer. The burst transfer is executed in 2 steps. First, the ‘burst’

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 20/27

commands are stored in memory; second, they are all executed by calling
the SendBurst function.

int spi_ShiftWrAndRdBurst(int NrBits, void *pDataOut, void *pDataIn, bool Message)
parameters: NrBits: Integer value representing the total number of bits

to be transferred to/from the slave device. This
value must be defined between 1 and a max value
described in Table 3. (32.000 bits is the absolute
maximum).

pDataOut: Pointer to a buffer containing the data bits that must
be sent out.

pDataIn: Pointer to a buffer that will receives the data bits
captured during the read access from the selected
slave device.

Message: Boolean flag controlling the generation of dialog box
to report error messages.
true dialog box enabled
false dialog box disabled

When dialog box are disabled, the error is only reported using the
return code.

returns: An integer error code. ≥0 if successful.
description: Adds a new simultaneous write and read access (to the slave device) to

the burst buffer. The burst transfer is started by calling the SendBurst
function. This function can only be used for a 4-wire SPI configuration.
Each time a bit is sent out, a bit is captured. If more bits must be read
than written, then the output data buffer must be padded with 0 to contain
the correct number of bits.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 21/27

int spi_ShiftWrThenRdBurst(int NrBitsOut, int NrBitsIn, void *pDataOut, void *pDataIn,
int Latency, bool WREnHigh, bool Message)

parameters: NrBitsOut: Integer value representing the number of bits to be
written to the slave device. This value must be
defined between 1 and a max. value described in
Table 3.

NrBitsIn: Integer value representing the number of bits to be
read from the slave device. This value must be
defined between 0 and a max. value described in
Table 3.

pDataOut: Pointer to a buffer containing the data bits that must
be sent out.

pDataIn: Pointer to a buffer that will receives the data bits
captured during the read access from the selected
slave device.

Latency: Integer value defining the number of clock cycles to
insert between the write and read access. The value
must be defined between 0 and 400.

WrEnHigh: Boolean flag defining the polarity of the write enable
signal.
true active high write enable
false active low write enable

Message: Boolean flag controlling the generation of dialog box
to report error messages.
true dialog box enabled
false dialog box disabled

When dialog box are disabled, the error is only reported using the
return code.

returns: An integer error code. ≥0 if successful.
description: Adds a new write access followed by a read access (to the slave device) to

the burst buffer. The burst transfer is started by calling the SendBurst
function. This function can only be used for a 3-wire SPI configuration. A
first write access is performed to the selected slave device. The length of
the access is defined by NrBitsOut. Then an idle period of programmable
length (Latency) is waited before starting the read access. This idle period
is used to give time to reverse the data signal direction. The latency can
be programmed to 0, but it is recommended to program it at least to 1 to
avoid shorts/conflict on the data line due to the time needed by the
different devices to reverse the direction.
When the idle period is completed, a read access is started. NrBitsIn bits
are captured.

void spi_SendBurst(bool Message)
parameters: Message: Boolean flag controlling the generation of dialog box

to report error messages.
true dialog box enabled
false dialog box disabled

returns:
description: Executes the SPI transfers defined by successive calls to the ShiftWrBurst,

ShiftWrAndRdBurst and ShiftWrThenRdBurst function.

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 22/27

void spi_SendBurstH(bool Message, int Handle)
parameters: Message: Boolean flag controlling the generation of dialog box

to report error messages.
true dialog box enabled
false dialog box disabled

Handle: handle of a library instance
returns:
description: Executes the SPI transfers defined by successive calls to the ShiftWrBurst,

ShiftWrAndRdBurst and ShiftWrThenRdBurst function. The burst is
performed using the device linked to the specified handle.

int spi_GetFirstBurstTransfer(void)
parameters: none
returns: An integer error code: < 0 if operation failed; ≥ if successful.
description: After the execution of a burst transfer, this command requests the

selection of the first SPI transfer to prepare the readback of the captured
data. To actually read the readback data, please refer to GetBurstData and
GetCapturedData; to select the following burst transfer, please refer to the
GetNextBurstTransfer function.

int spi_GetNextBurstTransfer(void)
parameters: none
returns: An integer error code: < 0 if operation failed; ≥ if successful.
description: After the execution of a burst transfer, this command requests the

selection of the next SPI transfer to prepare the readback of the captured
data. To actually read the readback data, please refer to GetBurstData and
GetCapturedData; to select the first burst transfer, please refer to the
GetFirstBurstTransfer function.

int spi_GetBurstData(int nr, char *pData)
parameters: nr : integer used to select the byte index within the selected

transfer. For instance, if one single transfer is to return 5 bytes of
data, nr can take values from 0 to 4.
*pData : pointer to a memory space where the requested data can
be stored.

returns: An integer error code: < 0 if operation failed; ≥ if successful.
description: Returns one single data byte from the transfer selected with

GetFirstBurstTransfer or GetNextBurstTransfer commands. Please also
refer to GetCapturedData

int spi_GetCapturedData(int NrBytes, void *pData)
parameters: NrBytes : integer used to specify the total number of bytes to

collect from the selected transfer.
*pData : pointer to a memory space where the requested data can
be stored.

returns: An integer error code: < 0 if operation failed; ≥ if successful.
description: Returns the specified number of bytes from the transfer selected with

GetFirstBurstTransfer or GetNextBurstTransfer commands.

int spi_GetScriptLength(char *FileName)

parameters: FileName : String – path and file name of the script.

returns: Integer representing the script length.
description: This function analyses the script file given as input parameter and returns

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 23/27

its length in number of lines.

int spi_ExecuteScript(char *FileName)

parameters: FileName : String – path and file name of the script.
returns: Integer : ≥0 if execution successful; other value if execution failed.
description: Starts the execution of the script given as input parameter in SPI Master

mode. The transfers specified in the script file is execute in a burst.

int spi_GetScriptPos(void)

parameters: none
returns: Integer representing the position in the script file.
description: This function gives the command in the script file that is currently being

handled.

int spi_Analyse(int NrBits,
bool SPI4Mode,
unsigned int SPI3WrLength,
unsigned int SPI3Latency,
unsigned int SPI3RdLength,
bool Message)

parameters: NrBits: unsigned integer specifying the number of samples
to analyse.

SPI4Mode: boolean defining the SPI interface type (SPI4 or
SPI3)

SPI3WrLength: in SPI3 mode, length of the write phase in clock
cycles

SPI3Latency: in SPI3 mode, length of the write-to-read latency
in clock cycles.

SPI3RdLength: in SPI3 mode, length of the read phase in clock
cycles.

Message: boolean value enabling / disabling the function
pop-up messages; 1 to enable; 0 to disable.

returns: Integer : ≥0 if analysis successful; other value if execution failed.
description: Starts the sampling and the analysis of the specified number of samples

from a SPI interface. Note that the analysis is done by oversampling the
SPI interface. Hence, the “NrBits” parameters specifies a number of
samples taken and not the number of SPI bits sampled.
Example: assume one wants so sample a 1MHz SPI bus during 1ms with
on oversampling of 10, this would mean “NrBits” must be equal to 10000.

int spi_AnalyseH(int NrBits,
bool SPI4Mode,
unsigned int SPI3WrLength,
unsigned int SPI3Latency,
unsigned int SPI3RdLength,
bool Message,
int Handle)

parameters: NrBits: unsigned integer specifying the number of samples
to analyse.

SPI4Mode: boolean defining the SPI interface type (SPI4 or
SPI3)

SPI3WrLength: in SPI3 mode, length of the write phase in clock
cycles

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 24/27

SPI3Latency: in SPI3 mode, length of the write-to-read latency
in clock cycles.

SPI3RdLength: in SPI3 mode, length of the read phase in clock
cycles.

Message: boolean value enabling / disabling the function
pop-up messages; 1 to enable; 0 to disable.

Handle: handle of a library instance
returns: Integer : ≥0 if analysis successful; other value if execution failed.
description: Starts the sampling and the analysis of the specified number of samples

from a SPI interface. The analysis is performed using the device linked to
the specified handle. Note that the analysis is done by oversampling the
SPI interface. Hence, the “NrBits” parameters specifies a number of
samples taken and not the number of SPI bits sampled.
Example: assume one wants so sample a 1MHz SPI bus during 1ms with
on oversampling of 10, this would mean “NrBits” must be equal to 10000.

void spi_Abort(void)

parameters: none.
returns:
description: Aborts the execution of a run / script. Requires a multi-threaded

environment.

int spi_GetCurrPos(void)

parameters: none.
returns: Integer, representing the position within the current SPI Master run.
description: When a script or a shift execution is interrupted with the Abort()

command, this function returns the last run sample number reference
where the execution stopped.

void spi_SetExportFileName(CString *FileName)

parameters: FileName: String – path and file name of the export file.
returns:
description: Specifies the name of the export file used with the autosave feature.

char *spi_GetExportFileName(void)

parameters: none
returns: String – path and file name of the export file.
description: Returns the name of the export file used with the autosave feature.

void spi_SetExportFileType(unsigned int FileType)

parameters: FileType: unsigned integer representing the output file type:
0 : Raw data file
1 : SPI raw data file
2 : Decoded data file

returns:
description: Specifies the type of the export file used with the autosave feature.

The SPI Analyser proceeds by oversampling the data from the SPI port. It
can present the data in 3 formats:
0 : Raw data file: all the samples are given out.
1 : SPI raw data file : the analyser the SPI port signals sampled at the

chosen SPI clock edge.
2 : Decoded data file : the SPI transaction are extracted from the

bitstream (refer to [2] for a description of the corresponding syntax).

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 25/27

int spi_GetExportFileType(void)

parameters: none.
returns: Integer representing the file type:

0 : Raw data file
1 : SPI raw data file
2 : Decoded data file

description: Returns the file type programmed with SetExportFileType() function for
the SPI Analyser autosave feature.

void spi_SetAutoSave(bool AutoSave)

parameters: AutoSave: boolean – 1 to enable; 0 to disable.
returns:
description: Enables / disables the SPI Analyser autosave.

bool spi_GetAutoSave(void)

parameters: none.
returns: A boolean value.
description: Returns the enable / disable status of the SPI Analyser autosave feature: 1

if enabled; 0 if disabled.

int spi_ExportRawDataFile(char *FileName)

parameters: FileName : output export path and file name.
returns: An integer error code: ≥0 if export successful; other value if export failed.
description: Exports the SPI analysed data to an output file, using the ‘raw data’

format (please refer to [2] for a description of the SPI Analyser formats).

int spi_ExportRawSPIDataFile(char *FileName)

parameters: FileName : output export path and file name.
returns: An integer error code: ≥0 if export successful; other value if export failed.
description: Exports the SPI analysed data to an output file, using the ‘raw SPI data’

format (please refer to [2] for a description of the SPI Analyser formats).

int spi_ExportDecodedSPIDataFile(char *FileName)

parameters: FileName : output export path and file name.
returns: An integer error code: ≥0 if export successful; other value if export failed.
description: Exports the SPI analysed data to an output file, using the ‘decoded SPI

data’ format (please refer to [2] for a description of the SPI Analyser
formats).

int spi_GetLastErr(void)

parameters: none.
returns: An integer value.
description: Returns the last error code returned by the device.

void spi_SetInternalTrigger(bool Internal)

parameters: Internal : boolean selecting the trigger type – 1 for internal
trigger; 0 for external trigger.

returns:
description: To trigger the SPI Analyser, 2 types of trigger can be selected:

- an internal trigger – the SPI Analyser starts immediately when the

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 26/27

user runs the Analyse() command;
an external trigger, defined onto the device 6 control lines.

bool spi_GetInternalTrigger(void)

parameters: none.
returns: A boolean – 1 for internal trigger; 0 for external trigger.
description: Returns the trigger type previously programmed with the

SetInternalTrigger() function.

void spi_SetEdgeTrigger (bool Enable)

parameters: Enable : boolean selecting edge or level trigger – 1 for edge
trigger; 0 for level trigger.

returns:
description: Selects edge or level trigger.

bool spi_GetEdgeTrigger (void)

parameters: none.
returns: A boolean – 1 for edge trigger; 0 for level trigger.
description: Returns edge or level trigger.

void spi_SetCtrlTrigMask (short *pMask)
parameters: *pMask: pointer to a short value. This range of the mask depends

on the operating mode:
 Analyser mode : value represents a 6 bit mask and ranges

from 0x01 to 0x3F
 Master mode : value represents a 4 bit mask and ranges

from 0x02 to 0x1E; bit 0 is used for the write enable signal
and bit 5 is used for the clock.

returns:
description: When the external triggering mode is used, the trigger mask selects the

control lines to be used as trigger inputs. When a mask bit is set to 0, the
corresponding control line is masked for triggering. The mask is given as a
pointer to a short value equivalent to the binary value of the mask
(example: mask = (Binary)011000 *pMask points to a short = 24).

int spi_GetCtrlTrigMask (void)
parameters:
returns: An integer representing the trigger mask
description: Returns the mask applied on the control lines to detect the external

trigger. The value is returned through the *pCtrlTrigMask pointer.

void spi_SetCtrlTrigPattern(short *pPattern)
parameters: *pPattern: pointer to a short value. This range of the pattern

depends on the operating mode:
 Analyser mode : value represents a 6 bit mask and ranges

from 0x01 to 0x3F.
 Master mode : value represents a 4 bit mask and ranges

from 0x02 to 0x1E; bit 0 is used for the write enable signal
and bit 5 is used for the clock.

returns:
description: Defines the pattern to detect on the trigger inputs to generate the trigger

event. The pattern is given as a pointer to a short value equivalent to the
binary value of the pattern (example: pattern = (Binary)011000

SPIC C Library
User's Guide

Revision 1.14 – 20-Jan-12 http://www.byteparadigm.com 27/27

*pPattern points to a short = 24).

int spi_GetCtrlTrigPattern (void)
parameters:
returns: An integer representing the trigger pattern
description: Returns the pattern applied on the control lines to generate a trigger event

and start applying data samples on the device system connector. The
value is returned through the *pCtrlTrigPattern pointer.

int spi_SetTriggerPos (int Sample)
parameters: Sample: integer value representing the index of the sample in the

run where the trigger should be positioned.
returns: An integer error code: 0 is successful; another value if unsuccessful.
description: Use this function to position the trigger after a given number of samples in

the total run. Once the sampling run is over, the corresponding number of
samples before the trigger is displayed, together with the rest of the run
after the trigger.
This function can be used in analysermode only.

int spi_GetTriggerPos (void)
parameters: none.
returns: A integer representing the trigger position.
description: Returns the trigger position previously programmed. The trigger position is

defined with the sample index at which it is positionned.
This function can be used in analysermode only.

int spi_GetOverSampling (void)
parameters: none.
returns: An integer value equal to 1, 2 or 4.
description: According to the position of the SPI Master SS edges, the device

automatically selects the adequate oversampling of its internal clock with
respects to the SPI clock. This function returns the selected oversampling.

