
Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 1

Using SPI Storm with a custom protocol
Many serial protocols used for chip-to-chip communications are very similar to the 'Serial
Peripheral Interface' (SPI).

This paper shows how to use SPI Storm custom protocol engine to define and use a
serial protocol that is different from SPI. The MIPI RF Front-End (RFFE) Control
Interface is taken as an example

MIPI RF Front-End (RFFE) Control Interface

The 'MIPI' (Mobile Industry Processor Interface) Alliance
(www.mipi.org) is an organization that develops interface
specifications for the mobile industry. It was founded in
2003 by ARM, Intel, Nokia, Samsung, STMicroelectronics
and Texas Instruments.

MIPI specifications provide interface solutions for mobile
handsets. MIPI is divided into multiple working groups. The
MIPI RF Front-End working group's scope is to define and
standardize control interface solutions for RF front-end
components and modules. This includes numerous front-
end devices including power amplifiers, low-noise
amplifiers, filters, switches, power management module,
antenna tuners and sensors.

The RFFE Control Interface is a master-slave two wire
interface composed of a single bidirectional data line and a
clock signal generated by the interface master. It runs up to
26 MHz and can count up to 15 slave devices per bus master.

SPI vs. RFFE

In its publications (example: http://mipi.org/sites/default/files/RFFE%20Marketing%20Overview_0.pdf) , the MIPI
RFFE working group points out that the standard Serial Peripheral Interface (SPI) is not suitable for their use: SPI
slave devices cannot share the bus lines. Without the proper slave addressing on a shared data bus, SPI requires
one slave select line and one slave-to-master data line per slave.

SPI is therefore characterized by poor topology and bad system scaling - hence the need for another protocol.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 1

Using SPI Storm with a custom protocol
Many serial protocols used for chip-to-chip communications are very similar to the 'Serial
Peripheral Interface' (SPI).

This paper shows how to use SPI Storm custom protocol engine to define and use a
serial protocol that is different from SPI. The MIPI RF Front-End (RFFE) Control
Interface is taken as an example

MIPI RF Front-End (RFFE) Control Interface

The 'MIPI' (Mobile Industry Processor Interface) Alliance
(www.mipi.org) is an organization that develops interface
specifications for the mobile industry. It was founded in
2003 by ARM, Intel, Nokia, Samsung, STMicroelectronics
and Texas Instruments.

MIPI specifications provide interface solutions for mobile
handsets. MIPI is divided into multiple working groups. The
MIPI RF Front-End working group's scope is to define and
standardize control interface solutions for RF front-end
components and modules. This includes numerous front-
end devices including power amplifiers, low-noise
amplifiers, filters, switches, power management module,
antenna tuners and sensors.

The RFFE Control Interface is a master-slave two wire
interface composed of a single bidirectional data line and a
clock signal generated by the interface master. It runs up to
26 MHz and can count up to 15 slave devices per bus master.

SPI vs. RFFE

In its publications (example: http://mipi.org/sites/default/files/RFFE%20Marketing%20Overview_0.pdf) , the MIPI
RFFE working group points out that the standard Serial Peripheral Interface (SPI) is not suitable for their use: SPI
slave devices cannot share the bus lines. Without the proper slave addressing on a shared data bus, SPI requires
one slave select line and one slave-to-master data line per slave.

SPI is therefore characterized by poor topology and bad system scaling - hence the need for another protocol.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 1

Using SPI Storm with a custom protocol
Many serial protocols used for chip-to-chip communications are very similar to the 'Serial
Peripheral Interface' (SPI).

This paper shows how to use SPI Storm custom protocol engine to define and use a
serial protocol that is different from SPI. The MIPI RF Front-End (RFFE) Control
Interface is taken as an example

MIPI RF Front-End (RFFE) Control Interface

The 'MIPI' (Mobile Industry Processor Interface) Alliance
(www.mipi.org) is an organization that develops interface
specifications for the mobile industry. It was founded in
2003 by ARM, Intel, Nokia, Samsung, STMicroelectronics
and Texas Instruments.

MIPI specifications provide interface solutions for mobile
handsets. MIPI is divided into multiple working groups. The
MIPI RF Front-End working group's scope is to define and
standardize control interface solutions for RF front-end
components and modules. This includes numerous front-
end devices including power amplifiers, low-noise
amplifiers, filters, switches, power management module,
antenna tuners and sensors.

The RFFE Control Interface is a master-slave two wire
interface composed of a single bidirectional data line and a
clock signal generated by the interface master. It runs up to
26 MHz and can count up to 15 slave devices per bus master.

SPI vs. RFFE

In its publications (example: http://mipi.org/sites/default/files/RFFE%20Marketing%20Overview_0.pdf) , the MIPI
RFFE working group points out that the standard Serial Peripheral Interface (SPI) is not suitable for their use: SPI
slave devices cannot share the bus lines. Without the proper slave addressing on a shared data bus, SPI requires
one slave select line and one slave-to-master data line per slave.

SPI is therefore characterized by poor topology and bad system scaling - hence the need for another protocol.



Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 2

The table below shows the main points of comparison between SPI and RFFE interface.

SPI RFFE
> 4-wires interface (SCLK, MOSI, MISO, 1x SS per

slave)
2-wires interface: SCLK, SDATA (bidirectional).

Slave select line No slave select line - slave addressing scheme
Single master Single master

Max. speed not defined Up to 26 MHz
Max. nr of slaves not defined Up to 15 slaves

Extended Register Read at Full Speed - an overview

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 2

The table below shows the main points of comparison between SPI and RFFE interface.

SPI RFFE
> 4-wires interface (SCLK, MOSI, MISO, 1x SS per

slave)
2-wires interface: SCLK, SDATA (bidirectional).

Slave select line No slave select line - slave addressing scheme
Single master Single master

Max. speed not defined Up to 26 MHz
Max. nr of slaves not defined Up to 15 slaves

Extended Register Read at Full Speed - an overview

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 2

The table below shows the main points of comparison between SPI and RFFE interface.

SPI RFFE
> 4-wires interface (SCLK, MOSI, MISO, 1x SS per

slave)
2-wires interface: SCLK, SDATA (bidirectional).

Slave select line No slave select line - slave addressing scheme
Single master Single master

Max. speed not defined Up to 26 MHz
Max. nr of slaves not defined Up to 15 slaves

Extended Register Read at Full Speed - an overview



Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 3

RFFE 'Extended Register Read at full speed' command shown above is one of the most complete types of
commands defined for the RFFE protocol. Almost all the other RFFE commands are simpler versions of it.
This paper shows how to implement this command with SPI Storm.

On the figure, the yellow color marks when the slave drives the data line. It must be noted that the clock is always
driven by the master. All the bits defined for this command are synchronous to the SCLK.

In this example, SPI Storm will be programmed to be used as the RFFE bus master.

SPI Storm custom protocol engine definition

SPI Storm is able to read / write with user-defined serial protocols. Each protocol can be defined as a sequence
of 'segments'. Each segment is defined according to the following properties:

- The segment length as a number of clock cycles;

- Whether the clock signal runs or is it held at a constant level during the segment execution;

- The data lines that are used for the segment;

- Each data line usage during the segment execution:

 Is the data line held at a constant level or floating?
 Is the data line used as an output of SPI Storm? If so, what is the value of the data generated

during the segment execution?
 Is the data line used as an input of SPI Storm? If so, will the data line be sampled while the

segment is executed?

Segments are really to be considered as the 'building blocks' of any specific protocol. Segments can be
grouped as 'macros'. When SPI Storm sends a read or write command to the defined serial interface, it executes
a sequence of pre-defined macros. This enables segment reuse, as a the same segment can be used for several
macros.

Hence, defining a custom protocol in with SPI Storm consists in 'cutting' the protocol into slices that represent
segments with specific properties and assemble them as macros. There is are many alternatives to define any
given protocol segments and macros.

Macros can be based on convenient definitions that match a protocol specification, on data size that can be easily
computed, and many user-defined criteria. SPI Storm and SPI Storm Studio provide lots of flexibility to describe
the protocol. Once it is executed, SPI Storm studio 'compiles' the description so it fits into the SPI Storm USB
device's memory and so its time of execution is optimized.

In the following sections, this paper provides an example for describing the 'Extended Register Read at full speed'
command of the RFFE interface protocol.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 3

RFFE 'Extended Register Read at full speed' command shown above is one of the most complete types of
commands defined for the RFFE protocol. Almost all the other RFFE commands are simpler versions of it.
This paper shows how to implement this command with SPI Storm.

On the figure, the yellow color marks when the slave drives the data line. It must be noted that the clock is always
driven by the master. All the bits defined for this command are synchronous to the SCLK.

In this example, SPI Storm will be programmed to be used as the RFFE bus master.

SPI Storm custom protocol engine definition

SPI Storm is able to read / write with user-defined serial protocols. Each protocol can be defined as a sequence
of 'segments'. Each segment is defined according to the following properties:

- The segment length as a number of clock cycles;

- Whether the clock signal runs or is it held at a constant level during the segment execution;

- The data lines that are used for the segment;

- Each data line usage during the segment execution:

 Is the data line held at a constant level or floating?
 Is the data line used as an output of SPI Storm? If so, what is the value of the data generated

during the segment execution?
 Is the data line used as an input of SPI Storm? If so, will the data line be sampled while the

segment is executed?

Segments are really to be considered as the 'building blocks' of any specific protocol. Segments can be
grouped as 'macros'. When SPI Storm sends a read or write command to the defined serial interface, it executes
a sequence of pre-defined macros. This enables segment reuse, as a the same segment can be used for several
macros.

Hence, defining a custom protocol in with SPI Storm consists in 'cutting' the protocol into slices that represent
segments with specific properties and assemble them as macros. There is are many alternatives to define any
given protocol segments and macros.

Macros can be based on convenient definitions that match a protocol specification, on data size that can be easily
computed, and many user-defined criteria. SPI Storm and SPI Storm Studio provide lots of flexibility to describe
the protocol. Once it is executed, SPI Storm studio 'compiles' the description so it fits into the SPI Storm USB
device's memory and so its time of execution is optimized.

In the following sections, this paper provides an example for describing the 'Extended Register Read at full speed'
command of the RFFE interface protocol.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 3

RFFE 'Extended Register Read at full speed' command shown above is one of the most complete types of
commands defined for the RFFE protocol. Almost all the other RFFE commands are simpler versions of it.
This paper shows how to implement this command with SPI Storm.

On the figure, the yellow color marks when the slave drives the data line. It must be noted that the clock is always
driven by the master. All the bits defined for this command are synchronous to the SCLK.

In this example, SPI Storm will be programmed to be used as the RFFE bus master.

SPI Storm custom protocol engine definition

SPI Storm is able to read / write with user-defined serial protocols. Each protocol can be defined as a sequence
of 'segments'. Each segment is defined according to the following properties:

- The segment length as a number of clock cycles;

- Whether the clock signal runs or is it held at a constant level during the segment execution;

- The data lines that are used for the segment;

- Each data line usage during the segment execution:

 Is the data line held at a constant level or floating?
 Is the data line used as an output of SPI Storm? If so, what is the value of the data generated

during the segment execution?
 Is the data line used as an input of SPI Storm? If so, will the data line be sampled while the

segment is executed?

Segments are really to be considered as the 'building blocks' of any specific protocol. Segments can be
grouped as 'macros'. When SPI Storm sends a read or write command to the defined serial interface, it executes
a sequence of pre-defined macros. This enables segment reuse, as a the same segment can be used for several
macros.

Hence, defining a custom protocol in with SPI Storm consists in 'cutting' the protocol into slices that represent
segments with specific properties and assemble them as macros. There is are many alternatives to define any
given protocol segments and macros.

Macros can be based on convenient definitions that match a protocol specification, on data size that can be easily
computed, and many user-defined criteria. SPI Storm and SPI Storm Studio provide lots of flexibility to describe
the protocol. Once it is executed, SPI Storm studio 'compiles' the description so it fits into the SPI Storm USB
device's memory and so its time of execution is optimized.

In the following sections, this paper provides an example for describing the 'Extended Register Read at full speed'
command of the RFFE interface protocol.



Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 4

RFFE read part 1:
Commands and addresses sent by the master to initiate the access.

This piece of the protocol is shown on the picture below:

A macro is defined for each of the following parts of the protocol:

Macro Macro name Segments list Segments names
Macro 1 'SSC' SSC 1 bit logic '0'

1 bit logic '1'
1 bit logic '0'

Logic0NoClock
Logic1NoClock
Logic0NoClock

Macro 2 'Extended Register
Read command frame'

ExtRegRead 4 bits variable slave address (SA3:SA0)
4 bit constant control value "0010"
4 bit variable byte count (BC3:BC0)

VarNibble
VarNibble1

VarNibble
Macro 3 Master Parity MasterParity 1 bit parity VarParity
Macro 4 Register Address RegAddr 8 bits address VarByte
Macro 5 Master Bus Park MasterBusPark 1 bit 'Bus Park' BusPark

TOTAL: 5 Macros based on 6 Segments.

1 Even if the nibble always takes the value "0010", we use the same VarNibble segment here, to which we'll
assign this value. An alternative way would be to assemble 4 separate segments of 1 bit with a constant value.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 4

RFFE read part 1:
Commands and addresses sent by the master to initiate the access.

This piece of the protocol is shown on the picture below:

A macro is defined for each of the following parts of the protocol:

Macro Macro name Segments list Segments names
Macro 1 'SSC' SSC 1 bit logic '0'

1 bit logic '1'
1 bit logic '0'

Logic0NoClock
Logic1NoClock
Logic0NoClock

Macro 2 'Extended Register
Read command frame'

ExtRegRead 4 bits variable slave address (SA3:SA0)
4 bit constant control value "0010"
4 bit variable byte count (BC3:BC0)

VarNibble
VarNibble1

VarNibble
Macro 3 Master Parity MasterParity 1 bit parity VarParity
Macro 4 Register Address RegAddr 8 bits address VarByte
Macro 5 Master Bus Park MasterBusPark 1 bit 'Bus Park' BusPark

TOTAL: 5 Macros based on 6 Segments.

1 Even if the nibble always takes the value "0010", we use the same VarNibble segment here, to which we'll
assign this value. An alternative way would be to assemble 4 separate segments of 1 bit with a constant value.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 4

RFFE read part 1:
Commands and addresses sent by the master to initiate the access.

This piece of the protocol is shown on the picture below:

A macro is defined for each of the following parts of the protocol:

Macro Macro name Segments list Segments names
Macro 1 'SSC' SSC 1 bit logic '0'

1 bit logic '1'
1 bit logic '0'

Logic0NoClock
Logic1NoClock
Logic0NoClock

Macro 2 'Extended Register
Read command frame'

ExtRegRead 4 bits variable slave address (SA3:SA0)
4 bit constant control value "0010"
4 bit variable byte count (BC3:BC0)

VarNibble
VarNibble1

VarNibble
Macro 3 Master Parity MasterParity 1 bit parity VarParity
Macro 4 Register Address RegAddr 8 bits address VarByte
Macro 5 Master Bus Park MasterBusPark 1 bit 'Bus Park' BusPark

TOTAL: 5 Macros based on 6 Segments.

1 Even if the nibble always takes the value "0010", we use the same VarNibble segment here, to which we'll
assign this value. An alternative way would be to assemble 4 separate segments of 1 bit with a constant value.



Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 5

RFFE read part 2:
Reading back data from the slave

Macro Macro name Segments list Segments names
Macro 6 'Data Frame' DataFrame 8 bits Data from slave SlaveDataByte
Macro 7 'Slave Parity' SlaveParity 1 bit Slave parity SlaveParity
Macro 8: 'Slave Bus Park' SlaveBusPark 1 bit Slave Bus Park SlaveBusPark

TOTAL: 3 Macros based on 3 Segments.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 5

RFFE read part 2:
Reading back data from the slave

Macro Macro name Segments list Segments names
Macro 6 'Data Frame' DataFrame 8 bits Data from slave SlaveDataByte
Macro 7 'Slave Parity' SlaveParity 1 bit Slave parity SlaveParity
Macro 8: 'Slave Bus Park' SlaveBusPark 1 bit Slave Bus Park SlaveBusPark

TOTAL: 3 Macros based on 3 Segments.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 5

RFFE read part 2:
Reading back data from the slave

Macro Macro name Segments list Segments names
Macro 6 'Data Frame' DataFrame 8 bits Data from slave SlaveDataByte
Macro 7 'Slave Parity' SlaveParity 1 bit Slave parity SlaveParity
Macro 8: 'Slave Bus Park' SlaveBusPark 1 bit Slave Bus Park SlaveBusPark

TOTAL: 3 Macros based on 3 Segments.



Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 6

Defining the protocol with SPI Storm Studio
Please refer to SPI Storm Studio user's guide for details about how to use SPI Storm Studio
(http://www.byteparadigm.com/files/documents/SPIStormStudio_UsersGuide.pdf)

SPI Storm Studio and the reference project (.ssp) file can be freely downloaded from the following link:
http://www.byteparadigm.com/files/download/MIPI-RFFE.ssp.

The picture below shows a screen capture of SPI Storm Studio's 'Custom SPI' tab, from which the segments and
macros can be defined. It shows the list of segments and macros and their properties.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 6

Defining the protocol with SPI Storm Studio
Please refer to SPI Storm Studio user's guide for details about how to use SPI Storm Studio
(http://www.byteparadigm.com/files/documents/SPIStormStudio_UsersGuide.pdf)

SPI Storm Studio and the reference project (.ssp) file can be freely downloaded from the following link:
http://www.byteparadigm.com/files/download/MIPI-RFFE.ssp.

The picture below shows a screen capture of SPI Storm Studio's 'Custom SPI' tab, from which the segments and
macros can be defined. It shows the list of segments and macros and their properties.

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 6

Defining the protocol with SPI Storm Studio
Please refer to SPI Storm Studio user's guide for details about how to use SPI Storm Studio
(http://www.byteparadigm.com/files/documents/SPIStormStudio_UsersGuide.pdf)

SPI Storm Studio and the reference project (.ssp) file can be freely downloaded from the following link:
http://www.byteparadigm.com/files/download/MIPI-RFFE.ssp.

The picture below shows a screen capture of SPI Storm Studio's 'Custom SPI' tab, from which the segments and
macros can be defined. It shows the list of segments and macros and their properties.



Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 7

Sequencing the macros as a program with SPI Storm Studio

SPI Storm Studio's 'Program' tab is where a 'program' can be defined.
A program is a sequence of macros ready to be executed.

Simple mouse controls allows inserting and organizing the custom macros
in the program tab area.

If the macro being inserted requires specifying a data, a window pops up to
enter it. Variable data can be entered directly from SPI Storm Studio's
interface or provided from files.

Please refer to SPI Storm Studio user's guide for more information about
how to use it.
(http://www.byteparadigm.com/files/documents/SPIStormStudio_UsersGuide.pdf)

The screen capture on the left shows the list of macros that will be
sequentially executed to send an 'Extended Register Read at Full Speed'
command from the RFFE interface protocol.

Worth noting, each macro can also be called independently from the API
provided with SPI Storm Studio. Please refer the 'SPI Storm Studio C library
user's guide' for more information.
(http://www.byteparadigm.com/files/documents/ug_SPIStormStudio_CLib.pdf)

Once a program is complete, it can be run from SPI Storm Studio's Run
Tab.

About SPI Storm

Byte Paradigm's SPI Storm is one of the most advanced USB serial
protocol host adapter available today.
It is used for functional testing on systems using SPI and many other
serial protocols.

Unlike its competitors, SPI Storm goes up to 100 MHz and includes
a custom protocol definition engine that provides full control of
when you want to sample data from any SPI(-like) slave. Hence, it
can easily handle the situations described in this paper.

For more information about SPI Storm, please go to: http://www.byteparadigm.com/products/spi-storm/

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 7

Sequencing the macros as a program with SPI Storm Studio

SPI Storm Studio's 'Program' tab is where a 'program' can be defined.
A program is a sequence of macros ready to be executed.

Simple mouse controls allows inserting and organizing the custom macros
in the program tab area.

If the macro being inserted requires specifying a data, a window pops up to
enter it. Variable data can be entered directly from SPI Storm Studio's
interface or provided from files.

Please refer to SPI Storm Studio user's guide for more information about
how to use it.
(http://www.byteparadigm.com/files/documents/SPIStormStudio_UsersGuide.pdf)

The screen capture on the left shows the list of macros that will be
sequentially executed to send an 'Extended Register Read at Full Speed'
command from the RFFE interface protocol.

Worth noting, each macro can also be called independently from the API
provided with SPI Storm Studio. Please refer the 'SPI Storm Studio C library
user's guide' for more information.
(http://www.byteparadigm.com/files/documents/ug_SPIStormStudio_CLib.pdf)

Once a program is complete, it can be run from SPI Storm Studio's Run
Tab.

About SPI Storm

Byte Paradigm's SPI Storm is one of the most advanced USB serial
protocol host adapter available today.
It is used for functional testing on systems using SPI and many other
serial protocols.

Unlike its competitors, SPI Storm goes up to 100 MHz and includes
a custom protocol definition engine that provides full control of
when you want to sample data from any SPI(-like) slave. Hence, it
can easily handle the situations described in this paper.

For more information about SPI Storm, please go to: http://www.byteparadigm.com/products/spi-storm/

Byte Paradigm - technical note - Using SPI Storm with custom protocol - MIPI RFFE Page 7

Sequencing the macros as a program with SPI Storm Studio

SPI Storm Studio's 'Program' tab is where a 'program' can be defined.
A program is a sequence of macros ready to be executed.

Simple mouse controls allows inserting and organizing the custom macros
in the program tab area.

If the macro being inserted requires specifying a data, a window pops up to
enter it. Variable data can be entered directly from SPI Storm Studio's
interface or provided from files.

Please refer to SPI Storm Studio user's guide for more information about
how to use it.
(http://www.byteparadigm.com/files/documents/SPIStormStudio_UsersGuide.pdf)

The screen capture on the left shows the list of macros that will be
sequentially executed to send an 'Extended Register Read at Full Speed'
command from the RFFE interface protocol.

Worth noting, each macro can also be called independently from the API
provided with SPI Storm Studio. Please refer the 'SPI Storm Studio C library
user's guide' for more information.
(http://www.byteparadigm.com/files/documents/ug_SPIStormStudio_CLib.pdf)

Once a program is complete, it can be run from SPI Storm Studio's Run
Tab.

About SPI Storm

Byte Paradigm's SPI Storm is one of the most advanced USB serial
protocol host adapter available today.
It is used for functional testing on systems using SPI and many other
serial protocols.

Unlike its competitors, SPI Storm goes up to 100 MHz and includes
a custom protocol definition engine that provides full control of
when you want to sample data from any SPI(-like) slave. Hence, it
can easily handle the situations described in this paper.

For more information about SPI Storm, please go to: http://www.byteparadigm.com/products/spi-storm/


