
White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 1/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

Introducing GP-22050
Multi-function USB 2.0 instrument for embedded system debug & test

GP-22050 is Byte Paradigm advanced multi-function USB 2.0 instrument for
testing and debugging embedded systems. Used as PC-controlled pattern
generator, logic analyzer, SPI and I²C host adapter, GP-22050 has found
its place on the desk of many embedded hardware and software engineers.

It is appreciated for its high versatility, the many software control interfaces
available, its performance and compactness.

This paper gives an overview on the GP-22050 unique features for embedded
system debug and test.

Testing & debugging embedded systems at functional level
is all about generating stimulus and observing responses.

Many Embedded Systems types

The Wikipedia Encyclopedia defines an ‘embedded system’ as “/…/ a special-purpose computer
system designed to perform one or a few dedicated functions, often with real-time computing constraints.
It is usually embedded as part of a complete device including hardware and mechanical parts.”

There is a complete range of embedded systems, depending on the technologies chosen to implement
them. At one end of the embedded system space, there are the processor-centric systems. They are
mainly composed of an embedded microcontroller and its peripherals. The system’s functionality is
almost fully software-defined. At the other end of this space, there is the ASIC, with functionality
completely enclosed in one single chip and fully hardware-defined.

But these are not the most common (or realistic?) systems, as most embedded systems involve a
combination of microcontrollers, peripherals, memories, communication ports, FPGA, ASIC, system-on-
chip (SoC), DSP, and so on...

All of this makes of designing an embedded system a very exciting technology job that involves a mix of
skills at software, hardware, mechanical, analog and digital levels.

White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 2/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

Testing and debugging is seen as a critical task

Many studies conducted recently – among others, a survey conducted by Byte Paradigm during
the Embedded System Conference in San Jose in 2008 – designate testing and debugging as
one of the most time-consuming tasks in the flow of designing an embedded system. This
should not come as a surprise, as this is the direct consequence of the increasing complexity of
embedded systems. Hence, testing and debugging – that is, ensuring that the system being
designed has no flaws and is functionally compliant to its specification – has become one of the
most critical tasks of embedded system design.

Testing and debugging involve many techniques: simulation, emulation, hardware
acceleration, prototyping and so on. In this paper, we focus on testing and debugging an
embedded system directly on hardware. This hardware can be a prototyping board with FPGA,
a prototype chip received from the fab, a test board or a set of electronic boards with general
computing resources used to emulate the final system, or the final system itself.

Using a prototype during the design process is interesting because you don’t have to wait until
the full system is available to perform early validation on a real hardware.

The challenge of testing and debugging an incomplete design.

When an embedded system assembles IP, code running on a microcontroller, digital processing
implemented in FPGA, ASIC, and many other ‘pieces’, it is likely that:
 it is the work of a whole team of engineers;
 the functional modules that compose the system are developed concurrently to speed

up the planning
 not all modules are designed and available at the same time.

A very common approach consists in gradually testing and debugging each module
independently prior to assemble them as a complete system. Being able to validate each
module on a hardware prototype in addition to other approaches (simulation …) certainly
improves the quality of the testing and debugging.

However, going on prototype for a limited part of the design poses the following problems:
 How to generate the inputs necessary to put my functional module under test?
 How to observe the responses of the functional module under test?

Stimulating and observing are really the 2 recurrent issues when testing and debugging an
incomplete system.

In extreme cases, an engineer may end up designing a whole new separate embedded system
to put another one under test, losing the benefit of going to a prototype for testing and
debugging to speed up design and being more productive in the validation process.

Table 1 gives an overview of what can be used and/or implemented to stimulate and observe a
prototype under test (not extensive).

White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 3/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

Efficient testing and debugging requires a mix of techniques

What to choose among the available tools and methodologies for stimulating and observing an
embedded system? The answer is simple: mix them all!

Any embedded system is a different mix of techniques; why would this be different for what
you use for testing and debugging?

Table 1 : Prototype stimulation / observation techniques

Resource type Stimulation Observation
Embedded
microcontroller

Generate specific test code and the µC
peripherals to generate stimulus for all
the system.
Program system registers and
memories.

Use the µC to read back memories and
registers where test results are stored

Oscilloscope n.a. Probe signals
Logic Analyzer n.a. Sample digital signals – requires a

debug connector.
JTAG port Bring specific values on the I/Os of

some devices through the boundary
scan network. Can be uneasy for real-
time stimuli.
Program devices, fill memories with
specific content.

With a software emulator, allows
accessing an embedded processor trace
data.

With tools like embedded LA, allows
collecting trace data out of FPGA,
previously stored in memories (not
real-time).

System ports
(Ethernet, PCI, …)

Allows stimulation through the same
functional ports as the final system.
Requires the system ports to be
designed and available.

Allows collecting trace data out of the
system under test through its normal
functional ports. Requires the system
ports to be designed and available.

Digital Pattern
Generator

Allows generating arbitrary digital
stimulus at the functional inputs of the
system under test. Requires the proper
test and debug connector.

n.a.

Protocol host
adapter

Specific to a given protocol (e.g.: SPI, I²C), allow controlling a communication
port from PC (write/read).

Protocol analyzer n.a. Allows analysis of the traffic on a given
communication port to check
compliance to a given protocol and/or
physical signaling.

Port monitor n.a. Collects and records traffic from a given
communication port of the system
under test.

Waveform
generator

Allows generating specific analog signal
at the inputs of the system under test.

n.a.

White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 4/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

GP-22050 - a ‘Swiss Army Knife’ for test and debug in one
compact USB 2.0 device.

One device, multiple modes of operation with a perpetual licensing model

Figure 1 : GP-22050 principle

GP-22050 targets manual bench testing and debugging on prototype system during design,
specifically on digital interfaces. Because testing and debugging scenarios involve generating digital input
stimuli AND collecting digital data, GP-22050 is basically both a logic generator AND a logic analyzer.

GP-22050 is based on modes of operations. A mode of operation is a coherent set of functionalities
that turns the GP-22050 into a given type of device, for a given type of test and debug task.

=
A versatile testing and debugging tool for:

Generating digital stimulus

Sampling digital signals
Accessing embedded system through serial ports

8PI Control Panel software
installed on PC

+
Choice of licensed modes of operation

GP-22050 device

connected to a system under test
+

USB 2.0
connection

Wiring with
system under test

White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 5/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

Each mode of operation defines a set of:

 Configuration settings for the GP-22050, such as:
o the number of channels used
o the clock frequency
o the trigger on which the device must start operating

 Operation functions, such as:
o Starting to generate samples
o Communicating with a given slave in SPI mode
o Starting to acquire samples.

8PI Control Panel software allows controlling the GP-22050 device in all modes of operation. It is
impossible to control the GP-22050 without installing 8PI Control Panel software.

8PI Control Panel software manages the GP-22050 USB 2.0 connection with the PC through a special
agent application called ‘Smart Router’. The ‘Smart Router’ must always run to control the GP-22050
device. This application is the ‘point of connection’ of the GP-22050 through USB on one side, and each
instance of the available modes of operation. If it does not run already, it is called automatically when
opening an instance of any mode of operation.

Some modes of operation are provided for free when purchasing the GP-22050. Some others require
purchasing an additional license. Table 2 gives an overview of the modes of operation available with GP-
22050 (Q1-Q2 2009 data – please go to www.byteparadigm.com for an up-to-date information).

Table 2: Modes of operation available for GP-22050

Mode of
operation

Description License information

ADWG

Turns the GP-22050 device into a digital pattern generator.

Digital samples generation on up to 16 bits, max. 50 MHz –
Generation only.

Available for free
with the GP-22050

device.
Analyzer

Turns the GP-22050 device into a logic analyzer.

Up to 16 bits parallel sampling at max. 50 MHz – Sampling only.

JTAG

Allows using GP-22050 to access a JTAG port.

Allows toggling the JTAG port signals (TDI, TMS, and TCK) and
collecting TDO. Support for SVF files.

SPI

Turns the GP-22050 into: SPI host adapter (SPI Master) and
SPI analyzer.

Allows playing the role of a serial peripheral interface master from
PC.
Allows sampling a SPI interconnect and decoding the SPI traffic
(logic analyzer with SPI protocol decoding support).

Requires additional
license.

I2C

Turns the GP-22050 into an I²C host adapter (I²C Master) and
I²C analyzer.

Allows playing the role of an I²C master from PC.
Allows sampling an I²C network and decoding the I²C traffic
(logic analyzer with I²C protocol decoding support).

Requires additional
license.

http://www.byteparadigm.com

White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 6/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

Multiple interfaces

An instance of a given mode of operation may use one of the provided following user interfaces:
 MS-Windows® graphical user interface;
 TCL/tk scripting interface;
 C/C++ function calls from provided DLL.

All 3 types of user interface are provided with each mode of operation licensed for the 8PI Control Panel.

Rough performance

Each mode of operation will make the most of the GP-22050 hardware resources.
GP-22050 rough performances are summarized in Table 3.

Table 3 : GP-22050 rough performance characteristics

Characteristic Value Comment
Max. number of digital channels 16 Depending on the mode of operation, from 2 to 16 digital

channels will be used.

Max. frequency on connector 50 MHz = Maximum pattern rate in ADWG mode;
= Maximum sampling frequency in logic analyzer mode;
= Maximum data rate in SPI mode;
...

Embedded memory 16 kByte Memory buffer in the GP-22050 device.

Max. throughput at connector 100 MByte/s Equivalent to 16 channels toggling at 50 MHz.

Max. sustained throughput 11 MByte/s When data quantities exceed the embedded buffer, the
data is flowed through the USB connection. This figure
shows the maximum rate sustainable by the GP-22050 with
8PI Control Panel software over the USB connection.

The advantage of extended PC controllability

GP-22050 finds its place in test labs and on the design desk of many hardware and software
engineers. Its natural companion is the ubiquitous PC where the designer elaborates
algorithms, builds system architecture with CAD tools, types application code and hardware
code (VHDL, Verilog, systemC), simulates the system at algorithmic, RTL, gate-level levels.

GP-22050 is controllable from any software environment that allows calling simple C functions.
It can also be controlled on base of simple configuration and data files (text or binary) or with
simple buttons and controls of the graphical user interface.

This extended PC controllability presents many advantages:
 Access through C/C++ DLL allows building custom control interfaces that fit specific

testing and debugging needs, enabling direct access to essential functions and
personalized use;

 You don’t need to any other environment than the one you are used to. C/C++
functions can be called from most environments, from Visual Basic to LabView®.

 PC controllability ensures a real continuity between the design and simulation
environment and the test environment on ‘real hardware’. This is especially valuable
when tests are conducted all through the design process.

 GP-22050 may be an essential part of a more complete test and debug solution.

White Paper
Introducing GP-22050

Revision 1.00 – 20/03/2009 7/7

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles (Thines) - Belgium

A very common example of using GP-
22050 as a complement to an existing
environment consists in installing the 8PI
Control Panel software on a logic
analyzer running with MS Windows and
connecting the GP-22050 to the logic
analyzer USB port. This builds up a
complete stimulus-and-response
solution, with the GP-22050 generating
digital patterns to a board and the
mainframe logic analyzer sampling the
system’s responses (Figure 2).

GP-22050 : a convenient toolbox for
many testing and debugging tasks.

Generating a clock, sending samples to a DAC,
accessing a system through a serial interface,
checking activity on a system’s I/Os… as many
very common tasks required when testing and
debugging a digital embedded system.

Surprisingly, it is not uncommon to spend days
(if not weeks) trying to do this conveniently
during design – not to mention that high-end
lab equipment are not always available for
common tasks.

GP-22050 offers a personal multi-purpose solution that complements the usual test
and debug environment and eases validation on prototype. As USB-powered device,
it just requires plugging the USB cable, connecting a few wires and starting the 8PI
Control Panel software.

Getting started with GP-22050

www.ByteParadigm.com is the best place to start with for the GP-22050. Here are very
useful links:
 GP-22050 page is the starting point for all GP-22050-related information.
 GP-22050 data sheet provides extensive information over the GP-22050 device,

especially the maximum ratings and hardware characteristics.
 8PI Control Panel user’s guide is where you’ll find features are offered by each

mode of operation.
 Understanding GP-22050 key performance figures technical note focuses on

explaining what is behind the GP-22050 rough figures.
 C libraries user’s guides, found on our general documentation page provide an

extensive list of the functions accessible through C function calls.
 TCL/tk libraries user’s guides and all technical documentation are accessible from

our general documentation page.
 Any complementary technical information can be requested from:

support@byteparadigm.com

Figure 2 : GP-22050 running with a logic analyzer

http://www.ByteParadigm.com
http://www.byteparadigm.com/product-gp-22050-14.html
http://www.byteparadigm.com/files/documents/ds_GP22050.pdf
http://www.byteparadigm.com/files/documents/ug_8PIControlPanel.pdf
http://www.byteparadigm.com/files/documents/TN_GP-22050_Performance.pdf
http://www.byteparadigm.com/documentation-15.html
http://www.byteparadigm.com/documentation-15.html
mailto:support@byteparadigm.com

