
Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  1/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

 

Electronic system-level development: 
Finding the right mix of solutions for the right mix of 

engineers. 
 
 
Nowadays, System Engineers are placed in the centre of two antagonist flows: microelectronic 
systems are increasingly complex whilst the time budget for development is constantly 
shrinking. Even if any ‘microelectronic system’ comprises a more or less integrated mix of 
hardware and software, it is not obvious that there is a common answer to this new 
productivity challenge. Why is that? Because there are different types of systems and different 
types of system engineers. 
 
Any electronic system-level (ESL) development approach aims at developing a system at 
an abstraction level located ‘above’ the traditional hardware (RTL) and software levels. At the 
end of the process the specified system functionalities are ‘optimally’ partitioned onto a set of 
hardware and software computational resources. This ‘top-down’ approach opposes to 
traditional ‘bottom-up’ methodologies, where the software is built after hardware availability, 
with very little interactions between the software and the hardware development teams. 
Before ESL has become a major concern to fill the so-called ‘electronic productivity gap’, 
engineers have been developing systems for long, often with a mix of a top-down and bottom-
up approaches. After all, ESL is nothing but translating the system specifications on a very 
formal way. Good and well-implemented ESL techniques are believed to be a solution to make 
better system, in shorter time, that ensures a good legacy for system evolution. Whereas this 
concept is well understood, nobody would claim that ESL methodologies are today widely 
deployed or that there is one single way to implement them. To further analyse this, let’s have 
a closer look at who the system engineer is, and what type of system he develops. 
 

Different system engineers 
 
A system engineer always manages hardware and software. However, given the traditional 
way to organise hardware and software teams separately in companies, system engineers are 
likely to have different hardware and software concerns, according to their past experiences 
and education. In an attempt to characterise the system engineer community, we may 
distinguish the 3 following groups: 

 SoC (system-on-chip) engineer; 
 Embedded system engineer; 
 System-on-board engineer. 

 
In the first group, the SoC engineer mostly comes from the ASIC industry; as such, he is 
mainly a hardware engineer, used to cycle-accurate RTL design in Verilog or VHDL, and 
familiar with semiconductor manufacturers design flows. This one has been the main target of 
EDA vendors, for products like synthesiser or static timing analysis tools. His primary role has 
been to specialise hardware to grant performance to a given application. Now, because most of 
new ASIC designs turn out to be SoC designs, he is being asked to take software into account 
in his quest of an optimal system. In SoC (and also ASIC design), mistakes can be very 
expensive in time and money; therefore, the SoC engineer remains ‘hardware-centric’. 
 
In the second group, the embedded system engineer mostly comes from the software 
world. He has a bottom-up approach, starting from standard hardware components, generally 
with a software platform (OS or middleware) and puts applications on top of that – mainly in 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  2/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

C/C++. Because he develops software for a 
specialized set of microprocessor and 
peripherals, he may be described as a ‘software 
designer with a deep hardware concern’. This 
hardware concern is more about choosing the 
right ‘off-the-shelf’ components than having a 
truly dedicated piece of hardware. This engineer 
is familiar with software emulation, debug 
techniques through ICE (in-circuit emulator) or 
other OCD (on chip debug) resources. In 
embedded system design, most mistakes may 
be fixed with a software update. However, the 
choice of the hardware remains crucial to 
guarantee the intrinsic performance of the 
system and its evolution. 
 
The third group, the system-on-board engineer’s group, is somewhat more blurry. Actually, 
this is the only group that has always been busy with system development. To simplify, they 
are where ASIC is overkill and where embedded systems are not specialised enough. They do 
both software and custom hardware (mostly CPLD and FPGA); they select off-the-shelf 
components like microcontrollers, memories and peripherals; they design PCBs and test them. 
They are proficient in schematics drawing, RTL and (low-level?) software coding. They are 
used to board measurements, and functional debug. They use parts of the ASIC design flow 
techniques (such as synthesisers) and are familiar to microprocessor application development 
and debug. 
 
System design productivity is not a matter of language only 
 
Together with the recent interest to implement efficient ESL methodologies, it is somewhat 
regrettable that the system development productivity problem is often reduced to a choice 
between ESL languages. It is no doubt that there is a real hype around SystemC, System 
Verilog and other extended VHDL languages adoption. It is true that engineers are looking for 
improving the way they describe, analyse and validate their system designs. This probably 
requires the use of higher-level language, in replacement to – or side by side with - the 
traditional VHDL, Verilog or C/C++. However, looking at its roots, the system development 
productivity gap cannot be limited to a matter of language only. These roots are numerous – 
we chose to describe 2 of them. 
 

Functional verification time is extended. 
 
With today’s design complexities, it is not uncommon that system engineers spend from 
40% to 70% of their design time for functional verification and debug. There are many 
origins to this serious bottleneck: 
 More powerful technologies (more MIPS, more gates/mm², higher bandwidths) 

bring more complex systems, with more functionalities. Checking them all, and the 
way they interact naturally demands more development time. Aside, a more 
complex specification also brings more potential interpretation errors – and hence 
more functional bugs to solve. 

 To cope with shorter products lifetime and reduced market window opportunities, 
system developers cannot afford to design everything in-house. As a consequence, 
a system heavily relies on third-party functional blocks, such as silicon intellect 
properties (IPs), standard components or standard board modules. Because the 

System type Engineer 
 

SoC 
 

 
HW-centric 

 
Embedded System 

 

 
SW-centric 

 
System-on-board 

 
 

 
HW / SW / PCB /… 
‘system-centric?’ 

Table 1 : Types of systems and system engineers 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  3/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

system engineer does not master all the details of these third-party functionalities, 
his work time shifts from designing them to verifying them. In theory, the system 
engineer gains at reusing 3rd party functionalities… only if the system engineer has 
checked that: 

o the 3rd party solution is bug-free; 
o the 3rd party solution correctly ‘fits’ (performance, interface) within the 

system; in other words, if he has validated that the 3rd party solution 
corresponds to his system architecture. 

… In the reality, the 2 above conditions are really problematic. 
 Traditional hardware RTL cycle-accurate simulations require increasing simulation 

run-times to functionally check a multi-million gates system; they are often be 
limited to a few boot code cycles. If RTL simulation is used, the validation time is 
lengthened; the functional coverage of it remains low in comparison with the overall 
system complexity. 

 
Hardware and software development teams are mostly separate. 

 
Past bottom-up system design methodology shaped the organisation of most system 
houses. As a result, the system hardware development team is used to working 
independently from the system software development team and often keeps on working 
so. 
 
With today’s pressures on overall system design time, nobody can afford to completely 
start developing software after hardware. This is especially true for SoC, where it is 
crucial to verify the smooth integration of software with the hardware before this one is 
actually available. To a less critical extend it is also true for systems developed with 
high-end FPGAs, that integrate a microprocessor. Hardware and software development 
must be seen as a concurrent and parallel process, ideally with bidirectional 
communications between the hardware and software development teams. This is where 
actually ESL languages pop-up as supporting tools. It makes no sense for hardware and 
software engineering communities to keep on fighting for VHDL/Verilog against C/C++. 
It is very unlikely that an embedded software designer will suddenly use SystemC for 
his next application development. Nevertheless, ESL languages may gain the following 
essential roles: 
 They can be used as a formal system specification description language. As 

such, they’d help limit the interpretation errors of the system specification. 
 They can be used to define models and interfaces between the system hardware 

and software elements, so that a real top-down concurrent development may 
take place. 

 
The bottom line is that the choice of ESL methodologies and tools must take the very 
specific characteristics of an organisation into account. We have already seen that the 
‘system engineers’ community is not homogenous. It is likely that a given set of ESL 
methodology and tools will not be efficient in any company. Why would it be otherwise, 
as the basic challenge is an interaction problem? 

 

Finding the right mix of solutions 
 
As previously stated, there is no single system engineer, and there is no single type of 
microelectronic system. Nonetheless, there is the same challenge for everyone: accelerate 
functional verification and debug; and this, the earliest in the design process. Now, let’s 
have a look at where this happens in the system development process. 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  4/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

Figure 1 proposes one synthetic view of a system top-down design flow. It all starts with defining the 
system specification: basically, the various algorithms and functionalities required by the system, the way 
they interact (definition of the function interfaces and the essential system data flows), and also the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Hardware 

 
RRTTLL  ddeevveellooppmmeenntt  

  
IIPP  sseelleeccttiioonn  

  
CCoommppoonneennttss  &&  mmoodduulleess  sseelleeccttiioonn  

  
CCoommmmuunniiccaattiioonn  iinntteerrffaacceess  sseelleeccttiioonn  

  
SSyysstteemm  ppeerrffoorrmmaannccee  eevvaalluuaattiioonn  

  
SSiiggnnaall--lleevveell  //  eelleeccttrriiccaall--lleevveell  cchheecckkss 

 
 

Software 

 
 

AAllggoorriitthhmmss  ooppttiimmiissaattiioonn  
  

OOSS  iinntteeggrraattiioonn  
  

PPeerriipphheerraallss  ddrriivveerrss  iimmpplleemmeennttaattiioonn  
  

CCooddee  //  AApppplliiccaattiioonn  ddeevveellooppmmeenntt  
  

SSyysstteemm  ppeerrffoorrmmaannccee  eevvaalluuaattiioonn  
  

SYSTEM 
 

  
TTeesstt  //  DDeebbuugg  

 
 

System specification 

 
AAllggoorriitthhmmss  ddeevveellooppmmeenntt  

  
IInntteerrffaacceess  ddeeffiinniittiioonn  

  
PPeerrffoorrmmaannccee  ssppeecc..  

  
HHWW  //  SSWW  ppaarrttiittiioonniinngg 

 

Plain language 
ESL languages 

MatLab / Simulink 
 

 

VHDL/Verilog 
Schematics entry 

Lab tests 
 

ESL languages / 
MatLab / Simulink 

 

Late correction / 
Respin (to avoid !) 

Late correction / 
Respin (to avoid !) 

Feedback – need for 
spec / partitioning 

change 

Feedback – need for 
spec / partitioning 

change 

Figure 1 : Synthetic view of a system design flow 

 C/C++ 
 
 ESL languages / 
 MatLab / Simulink 

 
 
 
 
 
 
 
 
 
 
 
 
 

ESL models / 
 co-simulation 

 
 

Software Emulation 
 
 

Hardware Emulation 
 
 

Prototyping 
 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  5/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

definition of what the performance of the system should be. This phase results in the hardware / software 
partitioning. That is, a distribution of the system functionalities onto a set of hardware and software 
computational resources. 
 
Specifying a system has always been the world of plain language, pen-and-paper 
engineering, and functional architecture drawing. Today, ESL languages are proposed, in an 
attempt to formalise the system algorithms and architecture description while avoiding 
‘freezing’ it into an arbitrary hardware/software partition. While it is commonly agreed that the 
system specification would benefit from such a formal approach – given the growing system 
functional complexity – it is not clear however if a given ESL language will be widely adopted. 
Still, engineers throughout the world are designing systems, and often with success.  
 
As previously stated, the system-on-board engineers always have. Not surprisingly, some 
of them have put in place tools to better specify systems from the start. The most 
representative examples of this are Matlab and Simulink, from The MathWorks. Matlab is a 
very powerful and intuitive modelling language that makes it easy for designers to quickly 
model their algorithmic functionalities; today, it also offers bridges to develop embedded code 
and/or RTL code from its M language. As such, it is not generally described as a real ‘ESL 
language’… but as we previously stated, ESL methodologies is not just a matter of language: 
the point is efficiency and productivity. 
 
Once the system specification is stable enough, it is to be decided how to partition it between 
hardware and software. Depending of the system, this partition may be reviewed in a later 
step, according to the feedback of the validations performed by the hardware and software 
development teams. As stated before, this has become a critical point: how can HW and SW 
guys team up to ensure a productive system functional verification? 
 

Table 2 : System functional validation solutions 

Validation 
solution 

Use Advantages What can be 
better 

Type of system 

 
RTL simulation 

 
Custom hardware 

validation; IP 
evaluation. 

 
System hardware 
internal visibility, 
cycle-accurate 

results.  

 
Excessive run-times, 

preventing from 
simulating ‘real’ SW 
and HW together. 

 
SoC, 

System-on-board 
 

Limited for 
embedded systems 

(co-processors, 
companion chips and 

glue logic) 
 

 
ESL models /  
co-simulation 

 
Delivers hardware 

functional models at 
a higher abstraction 
level than RTL for 

software 
development. Ex: 

ISS model of a 
processor 

(Instruction Set 
Simulator). Allows 

the simulation of HW 
and SW in a common 

environment. 
 

 
Allows 

viewing/simulating 
hardware from a 

functional viewpoint; 
SW/HW simulation 

speed. 

 
HW/SW teams 

organisation. No ESL 
language generally 

adopted. 

 
SoC, 

 
 

System-on-board 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  6/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

Validation 
solution 

Use Advantages What can be 
better 

Type of system 

 
Software 
emulation 

 
Embedded software 
development and 
debug. System 

debug. 
 

 
Uses real processor 
at (near) system 

speed;  
can be used to 

functionally validate 
and debug µP-based 
HW environment;  
can be part of a 

system prototyping 
approach. 

 

 
Only offers a visibility 

on the system 
through the 
processor (!) 

 
SoC, Embedded 

System, System-on-
board 

 
Hardware 
emulation 

 
System hardware 

validation 

 
Internal hardware 

visibility,  
re-usability, 

acceptable run 
speed. 

 

 
Setup length, user 
friendliness, poor 

software validation 
abilities, cost. 

 
SoC 

 
Prototyping 

 
Validation of 3rd party 
functionalities (IPs, 

modules …). 
Explore technology 
options; provides a 
first ‘draft’ of what 

the actual system will 
be. 

 

 
Validation of 3rd party 

elements (IPs, 
modules, …); (near) 
real system speed 

execution.  
 

Functionally very 
close to the system 
being developed. 

 
Cost. Can comprise 
software emulation 

as well. 
 

 
HW visibility / HW 

debug abilities, 
prototype reuse, and 

setup length. 

 
SoC, Embedded 

System, System-on-
board 

 
The above table summarises the major available (or available soon) methodologies for 
functional validation. The following points should be noted: 

 In the ‘What can be better’ column are quickly summarised the drawbacks of 
each methodology from a system development viewpoint. For instance, 
software emulation only offers a visibility on the system through the 
processor… well, that’s actually what the software emulation is meant for! 
The conclusion in this case, is that software emulation can be complemented 
with other techniques in order to gain better system visibility. 

 It is no doubt that a lot of drawbacks preventing one given methodology 
from being widely applied have non-technical roots. For instance, the 
business models in the embedded system world are somewhat different from 
these of the SoC world, with the consequence that there may be some delay 
for a ‘SoC methodology’ to be accepted by embedded system engineers. 

 Lots of actual system development methodologies are in fact a mix of several 
approaches. Table 1 summarises the dominant trends, and is not exhaustive. 

 
Which key information does this inventory hold? 
 
First of all, a given system development technique does not apply to any system.  
Let’s take hardware emulation as an example. 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  7/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

Originally, hardware emulation aimed at providing a fast validation technique for big ASIC 
designs. Hardware emulation generally provides a unified software/hardware environment to 
map a logic-equivalent version of the future hardware onto an array of programmable logic 
devices, such as FPGAs. The emulator offers many debug options to generate test benches and 
apply the stimuli’s onto the mapped hardware. This approach greatly increases the validation 
speed in comparison with the classical RTL / gate level simulations, while maintaining a high 
hardware internal visibility. Modern hardware emulation systems bring new features to help 
software debug, and are progressively oriented towards real ‘system emulation’. 
 
Hardware emulation can be particularly helpful for complex SoC designs; it is less relevant for 
system-on-board and almost useless for embedded systems: 

 Developing a system-on-board implies de facto the development of one or 
several boards, used as prototype during development to validate both the 
architecture and the PCB design issues. 

 The central point for embedded systems is the embedded software. 
‘Classical’ software emulation offers a more efficient development 
environment than hardware emulation systems. 

 Because prototyping has to be used in these 2 cases, adding hardware 
emulation to the overall system development methodology does not bring 
sufficient added value1 in general. 

 
Second of all, functional system validation is all about finding the right mix of 
techniques, according to the system being developed and the available engineering 
resources.  
 
It is interesting to see that the major hold back to implementation of recent ESL 
methodologies is not that engineers don’t want ESL. This is actually what they use when 
describing their specification with Matlab. This is actually what they do when they prototype a 
system-on-chip on a board with FPGAs and debug hardware/software interactions through 
software emulation. 
 
In brief, there is currently no technique that ‘fits them all’.  Once again, this is due to the 
wide variety of systems and the wide variety system development teams. 
 
In the subsequent sections, we’ll focus on prototyping as a system validation technique and 
check what can be improved for better system development productivity. 
 

Improving prototyping 
 
Today, software emulation for embedded system development is one of the most 
successful applications – yet very specialised – of the prototyping as a system validation 
technique. Let’s examine its main characteristics: 

 With SW emulation, the functional system validations are conducted under 
conditions very close (if not identical) of those of the definitive system. 
Bugs related to a bad modelling can be avoided. Validations are run at (near) 
system speed, shortening the overall validation time. This enables a very good 
development and validation productivity. 

 SW emulation presents a good integration between the system engineer 
development environment and the prototype. Practically, the developer never 

                                                
1 Aside, the price and the cost of use of hardware emulation probably do not justify its use in these cases. 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  8/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

quits its familiar code development and debugging environment, even if the code is 
run on the embedded platform itself. 

 SW emulation is possible because the system hardware is available with on-
chip debug features accessible through proprietary or standard (e.g. JTAG) 
interfaces.  

 
Nevertheless, software emulation has unique characteristics that ease a prototyping approach: 

 An important part of the hardware (embedded microprocessor and peripherals) is 
mostly standard, predictive (it is well known early in the design that a given µP and 
a set of peripheral will be enough for the system) and limited (the functional 
hardware is concentrated on very few devices). Many standard development kits are 
available, and there is very little risk for the prototype HW resources to be under 
evaluated. 

 Embedded systems are processor-centric. Despite specialised functionalities for 
which a custom hardware may be necessary, most of the functionality is added with 
software on top of an OS or a given firmware. Using the processor as the main 
(and unique) access point often brings enough system visibility to complete 
the validation process. 

 
System prototyping generally implies developing a board that is functionally the most 
equivalent to the targeted system. Sometimes, the prototype is very close to the definitive 
system (as for system-on-board, where it is also a first draft of the future PCB); sometimes it 
sacrifices some performance for functional verification (as for the prototyping of a SoC with a 
FPGA and a stand-alone microprocessor). 
 
As previously stated, the 3 major drawbacks of system prototyping (the embedded system SW 
emulation solution put apart) are: 

1. Poor prototype reusability. 
2. Excessive prototype setup length. 
3. A lack of visibility for the system debug. 

 
The reusability issue is unfortunately difficult to address with a system prototyping approach. 
Basically, if the system requires a specialised hardware development, either the prototype will 
be excessive in terms of computational resources, or it will just fit the resources required for 
the development. In the first case there is just a better chance that the same prototype will fit 
for another development. Using programmable devices such as FPGA with numerous IOs and a 
good package ‘forward compatibility’ can improve the prototype reusability. Foreseeing 
standard connectors on which functional piggy-back extensions can be plugged can also 
guarantee the prototype legacy. Nevertheless, the prototype reusability is an investment 
protection issue to be examined together with the product evolution strategy. 
 
The prototype setup length issue mostly comes from the fact that there is fundamentally a 
rupture between the development environment and the prototype validation environment. The 
latter is the world of labs, with intensive use of multimeters, oscilloscopes, logic analysers, and 
protocol analysers. The development environment is the world of test benches, RTL simulators, 
where stimuli’s and analysis programs can be easily developed. In general, continuity between 
development and prototype functional validation environment does not exist, as for the 
software emulation. 
 
The visibility issue comes side by side with the prototype setup length. Whereas having one 
single access point is enough for software emulation, prototype system hardware validation 
does not offer the same visibility inside the design. Of course, hardware validation and debug 



Byte Paradigm 
White Paper 

Revision 1.02 – 18/07/2008  9/9 

Byte Paradigm – info@byteparadigm.com – www.byteparadigm.com 
Chaussée de Namur, 119, bte 1 – B-1402 Nivelles - Belgium 
 
 

often requires observing hardware at gate level and with clock cycle accuracy. Similarly to 
embedded processor, developing a custom hardware with good prototyping qualities requires 
to foresee the adequate access points. For example, this can be a dedicated port IP in a FPGA, 
connected to a few debug pins; systems busses can be left open, and connected to a board 
debug connector; dedicated access to registers and memories can be available to be able to 
monitor a system state. 
 
As a conclusion, to benefit the most from prototyping as a system validation methodology it 
requires: 
 Multiplying the prototype access points to increase the prototype visibility. 
 Having the adequate set of tools to benefit from this new visibility while holding the 

prototype setup length as short as possible. 
 
Bottom line 
 
Electronic system development faces today an important problem of productivity. Improving it 
certainly requires finding new methodologies and it makes no doubt that a real ESL approach 
can help2. Not surprisingly, system validation has become one of the most critical problems 
that should be addressed to increase the development productivity. Given the increasing 
complexity of current systems, traditional validation techniques progressively show their 
limitations. Another important element is that ‘validation’ is a point where the hardware and 
software teams meet, requiring a harmonious system-oriented methodology in order to really 
validate the ‘system’ as a whole and benefit from both SW and HW viewpoints. 
 
Some techniques and (partial?) solutions already exist for a real system validation and debug. 
Some others still need maturity. Nevertheless, solving the ‘validation problem’, and hence, 
part of the ‘system productivity problem’ likely requires finding the adequate mix of solutions. 
Why is that? Because there are different types of systems and different types of system 
engineers.  
 
At Byte Paradigm, we believe that successful system development requires a specific approach 
that best fits your company organisation. We also believe that its success depends on the good 
association of complementary techniques, especially for the system validation. If they are 
improved, these techniques will contribute to increase your system development productivity.  
 
For instance, increasing system prototype visibility by offering efficient access points and a real 
continuity between the system development environment and the system prototype would 
greatly enhance your prototype validation.  
 
Byte Paradigm delivers PC instruments to test and debug electronic and embedded systems. 
Byte Paradigm sees tests and debug on real hardware as one of the key elements to efficient 
system development. 
 

http://www.byteparadigm.com. 
 
 

About the author 
Frédéric Leens is Sales and Marketing Manager at Byte Paradigm. 

He can be reached at: frederic.leens@byteparadigm.com 

                                                
2 And as we have seen with the successful use of Matlab as an algorithmic abstraction layer for system-on-board 
design, an ESL approach is not limited to chosing the right ‘ESL language’. 


